Question number	Answer	Additional guidance	Mark
2(a)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): a negative ion must have more electrons than protons in the particle (1) therefore Z will have a 2- charge (1) 	Do not allow any comparison involving neutrons.	(2)

QuestionAnswerAdditionnumber		Additional guidance	Mark
2(b)	$\frac{40 + 2 \times (14 + 16 \times 3) (1)}{= 164 (1)}$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
2(c)	 Li ion with empty outer shell (1) 1+ charge on Li (1) 8 electrons on outer shell of F (1) 1- charge on F (1) 	(4)

Question number	Answer	Mark
3(a)(i)	С	(1)

Question number	Answer	Mark
3(a)(ii)	С	(1)

Question number	Answer	Mark
3(b)	 Any two of the following points. For the acid, use the same: volume (1) concentration (1) temperature (1) 	(2)

Question number	Answer	Mark
3(c)(i)	electrolysis (1)	(1)

Question number	Answer	Mark
3(c)(ii)	 An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification-understanding (1 mark) aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce aluminium from its ore (1) 	(2)

Question number	Answer	Mark
3(d)	$ Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 • Correct formulae (1) • Balancing of correct formulae (1) $	(2)

Question number	Ans	wer			Mark	
4(a)						
		salt	soluble	insoluble		
		ammonium chloride	✓			
		lithium sulfate	✓			
		magnesium carbonate		\checkmark]	
	• 4	All three correct (2) Any two correct (1)			(2)	

Question number	Answer	Additional guidance	Mark
4(b)	 mass values in correct places (1) multiplication by 100 (1) correct final answer to two significant figures (1) 	2.53 2.85 89% (to 2 s.f.) Award full marks for correct numerical answer without working.	(3)

Question number	Answer	Mark
4(c)	 An explanation that combines identification - improvement of the experimental procedure (maximum 2 marks) and justification/reasoning, which must be linked to the improvement (maximum 2 marks): add excess sodium sulfate solution rather than a few drops (1) so more reaction occurs to form more lead sulfate (1) filter the reaction mixture rather than pour off the liquid(1) so none of the lead sulfate is lost on separation(1) wash the lead sulfate (1) so the impurities are removed (1) place the lead sulfate in an oven/warm place (1) so the lead sulfate is dry (1) 	(4)

Question number	Answer	Mark
4(d)	 volumes of solution too large for titration method (1) large volumes of liquid need to be heated and then allowed to crystallise (1) 	(2)

Question number	Answer	Mark
5(a)(i)	С	(1)

Question number	Answer	Mark
5(a)(ii)	C	(1)

Question number	Answer	Mark
5(b)	reactants are being used up (1)	(1)

Question number	Answer	Mark
5(c)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): aluminium and copper have different size atoms (1) and so this prevents the layers of metal atoms from sliding over one another (1) 	(2)

Question number	Answer	Additional guidance	Mark
5(d)	proportion gold = $9 \div 24$ (= 0.375) (1) mass = 0.375 x 12 = 4.5 (a) (1)	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
6(a)	 An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): J and K are electrolytes (1) because their solutions conduct electricity and are decomposed (1) 	(2)

Question number	Answer	Mark
6(b)	D	(1)

Question number	Answer	Mark
6(c)	 An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): hydrogen (H⁺) and sodium (Na⁺) ions attracted to cathode, hydroxide (OH⁻) ions and sulfate (SO₄²⁻) ions attracted to anode (1) because the ions are attracted to the oppositely charged electrode (1) 2 hydrogen ions/2 H⁺ accept 2 e to form hydrogen molecule/H₂ (1) 4 hydroxide ions/4 OH⁻ lose 4 e to form 	
	oxygen molecule/O ₂ (1)	(4)

Question number	Answer	Additional guidance	Mark
8(a)(i)	 particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1) 	Allow reverse statements giving correct information.	(2)

Question number	Answer	Mark
8(a)(ii)	 An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (2 marks): very strong bonds/ionically bonded (1) between 2+ cations and 2- anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1) 	(3)

Question number	Answer	Additional guidance	Mark
8(b)(i)	$CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O$		
	+ CO ₂		
	all formulae on correct side (2)balancing (1)	Allow 3/4 formulae (1)	(3)

Question number	Answer	Additional guidance	Mark
8(b)(ii)	relative formula mass copper carbonate = $63.5 + 12.0 + (3 \times 16.0)$ = 123.5 relative formula mass copper oxide = $63.5 + 16.0$ = $79.5 (1)$ mass copper oxide = $\frac{15.0 \times 79.5}{123.5} = 9.7 \text{ g to } 2 \text{ s.f. (1)}$ Answer must be to two significant	Award full marks for correct numerical answer without working.	
	OR		
	moles of copper carbonate $= \frac{15.0}{123.5} = 0.12145(1)$ mass of copper oxide = moles CuCO ₃ × 79.5 = 9.7 g to 2sf (1) Answer must be to two significant figures		(2)

Question number	Answer	Additional guidance	Mark
<mark>8(c)</mark>	2.4/24 moles Mg = 0.1 mol (1) and 0.2 moles H ₂ O has mass 0.2 × formula mass H ₂ O = 3.6 g (1)	Award full marks for correct numerical answer without working.	
	total mass reactants = $2.4 + 3.6 =$ 6.0 g is the same as total mass products = $5.8 + 0.2 =$ 6.0 g (1)		(3)

Question number	Answer	Mark
9(a)(i)	 An explanation that makes reference to: identification – knowledge (1 mark) and reasoning /justification – knowledge (1 mark): a strong acid is completely ionised in solution/exists completely as ions (1) but a weak acid is only partly ionised/exists mainly as molecules with very few ions present (1) 	(2)

Question number	Answer	Mark
9(a)(ii)	hydroxide ions react with hydrogen ions and reduce the hydrogen ion concentration therefore increase pH (1)	(1)

Question number	Answer	Mark
9(b)	ZnO + 2HNO ₃ → Zn(NO ₃) ₂ + 2H ₂ O • zinc nitrate formula (1) • full, balanced equation (1)	(2)

Question number	Answer	Additional guidance	Mark
9(c)	mass = $50 \times \frac{40}{1000} (1) = 2 (g) (1)$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Additional guidance	Mark
10(a)	Formula mass ammonium chloride	Award full marks for	
	= 14.0 + 4.00 + 35.5 = 53.5	correct numerical answer	
		without working.	
	moles of ammonium chloride		
	10.0 - 0.187(1)		
	53.5		
	volume ammonia		
	$= 0.187 \times 24$		
	$= 4.49 \mathrm{dm^3}(1)$		
	or		
	 2 × 53.5 = 107 g ammonium 		
	chloride produces $2 \times 24 =$		
	48 dm ³ ammonia (1)		
	 10.0 g ammonium chloride 		
	produces		
	10.0 × 2 × 24 - 4.40 dm ³		
	2×53.5		
	ammonia (1)		(2)

Question number	Answer	Additional guidance	Mark
10(b)(i)	$25 \div 1000 \times 0.1 = 0.0025 (1)$ $\frac{35 \div 1000 \times 0.075 = 0.002625}{(1)}$		
	The acid is in excess (1)	Third mark only awarded as conclusion from calculated data.	(3)

Question number	Answer	Mark
10(b)(ii)	$\frac{36.20 + 36.30}{2} = 36.25 \ (1)$	(1)

Question number	Answer	Mark
10(b)(iii)	D	(1)

Question	Answer	Additional guidance	Mark
Question number 10(c)	Answer mol of acid = 24.80 \div 1000 × 0.200 (= 0.004 96 mol) (1) mol NaOH = 2 × 0.004 96 (= 0.009 92) (1) conc. of NaOH = 0.009 92 \div 25.0 × 1000 (1) = 0.3968/0.397 (mol dm ⁻³) (1) or (25.00 × conc NaOH) \div 2 = 24.80 × 0.200 (2)	Additional guidance Award full marks for correct numerical answer without working. Allow max 3 marks if missing '2 ×' in step 2.	Mark
	$\frac{\text{conc NaOH} = 2 \times 24.80 \times 0.200 \div}{25.00 (1)}$ $= 0.3968/0.397 \text{ (mol dm}^{-3}\text{) (1)}$		<mark>(4)</mark>

Question Number	Answer	Acceptable answers	Mark
4(a)	D		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	the mass (of product) is calculated (from the balanced equation) (1)		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	$\frac{\text{actual yield}}{\text{theoretical yield}} / \frac{2.8}{4.0} (1)$		
	x 100 (1)	allow formula described in words	(2)

Question	Answer	Acceptable answers	Mark
Number			
4(b)(iii)	 Any two from the following points loss of product during experiment (1) 		
	 reaction does not complete (1) 		
	 not enough carbon in mixture (1) 		
	• other (unwanted) reactions occur (1)		(2)

Question Number	Answer	Acceptable answers	Mark
4 (c)	63.5 + (2 x 35.5) / 134.5 (1)		(1)

Question Number	Answer	Acceptable answers	Mark
4 (d)	 mass of oxygen = 14.3 - 12.7 (1) =1.6 copper atoms: oxygen atoms = 12.7/63.5 : 1.6/16 (1) 0.2 : 0.1 Cu₂O (1) 		(3)

Question	Answer	Acceptable answers	Mark
Number			
4(a)(i)	C CuCl ₂		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	An explanation linking the following points Either • the amount of product calculated (1)		
	 using the equation (for the reaction) (1) Or 	using reacting masses	
	 the maximum amount of {product / copper chloride} (1) when all {reactant / copper} reacts (1) 	amount of product when all {reactant / copper} reacts (2)	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	$2Fe(s) + 3Br_2(g) \rightarrow 2FeBr_3(s)$		
	reactant formulae (1) balancing correct formulae	allow state symbol mark even if	
	state symbols (1)	other marks not awarded	(3)
	s and g must be lower case		

Question	Answer	Acceptable answers	Mark
Number			
4(b)(ii)	$56 + (3 \times 80) (1)$	give full marks for correct answer	
	= 296	with no working	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(iii)	ratio: 56/310 (1)		
	% iron 56/310 x 100 (%) (1)	any number/310 x 100 (%)	
	(= 18 (%))	18.06/18.1	
		give full marks for correct answer	(2)
		with no working	

Question Number	Answer	Acceptable answers	Mark
4(b)(iv)	HO	OH,O1H1,H1O1	(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	shared pair of electrons (between two atoms)	two shared electrons reject between two or more atoms	(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	D it has a low boiling point		(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	An description including three of the following points cool (to about -200 °C) / liquefy (air) (1) 		
	 fractional distillation (1) allow to warm / heat (1) 	mention of fractionating column/ fractionation	
	 {nitrogen / lower boiling point} obtained from top of column (1) 	ignore state of nitrogen	
	 {oxygen / higher boiling point} obtained from bottom of column (1) 	can be separated because they have different boiling points(1) alternative to last two points	(3)

Question Number	Answer	Acceptable answers	Mark
4(a)	to allow air/oxygen in	to ensure magnesium reacts/burns / combusts	(1)

Question	Answer	Acceptable answers	Mark
Number			
4(b)(i)	all points correctly plotted to half a small square (2) line of best fit (1)	Allow one mark for four or five correctly plotted points ecf their points	(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	Any one from not all magnesium {burned / reacted} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)	(1)

Question Number	Answer	Acceptable answers	Mark
4(c)	$2Mg + O_2 \rightarrow 2MgO$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
4(d)	0.414 / 207 or 0.064 / 16 (1) 0.002 : 0.004 or 1 : 2 (1) empirical formula PbO ₂ (1)	if 207 / 0.414 and 16 / 0.064 ratio 500 : 250 or 2 : 1 (1) empirical formula Pb_2O (1) allow 3 marks for 0.414 / 207 or 0.064 / 32 ratio 1 : 1 empirical formula PbO_2 allow 2 marks for	(3)
		if 0.414 / 207 and 0.064 / 32 ratio 1 : 1 empirical formula PbO	

Question Number	Answers	Acceptable Answers	Mark
2(a)(i)	A displacement		(1)

Question Number	Answers	Acceptable Answers	Mark
2(a)(ii)	orange	Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours Reject other colours combined with	(1)
		these e.g. yellow-green	

Question Number	Answers	Acceptable Answers	Mark
2(b)	С		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	 (H₂ + Br₂ →) 2HBr • correct formula for HBr (1) • balancing of correct formulae (1) 	Ignore state symbols Allow BrH (1)	(2)

Question Number	Answer	Acceptable answers	Mark
2(d)	[24 + 2x35.5] (1) (= 95)	95 with no working	(1)
		[24 + 2x35.5] with no answer or an incorrect answer scores (1)	

Question Number	Answers	Acceptable Answers	Mark
2(e)	 relative formula mass =[23 + 19] (1) (= 42) 	(19/42) x 100 (2) (= 45.2 (%)) (19/[19+23]) x 100 (2) (= 45.2 (%))	(2)
	 [(19/their relative formula mass) x100] (1) (=45.2(%)) consequential on their relative formula mass 	45/45.2 (%) with no working (2) Ignore additional significant figures Allow 42 seen in working (1) Allow (19/23) \times 100 = {82.6% / 83%} (1)	

Total for Question 2 = 8 marks

Question Number	Answer	Acceptable answers	Mark
4(a)(iv)	 (in 100 atoms) 	63.6 with no working (3)	(3)
	mass of copper-63 atoms =		
	63 x 70 / 63 x 0.7 / 63 x 7 (1)	63.5/64 with no working (0)	
	(= 4410 / 44.1 / 441)		
		Allow correct working shown to	
	 mass of copper-65 atoms = 	calculate 63.6 then final answer is	
	65 x 30 / 65 x 0.3 / 65 x 3 (1)	rounded to 64 (3)	
	(= 1950 / 19.5 / 195)		
		Note: correct working shown to	
	 relative atomic mass = 	calculate 63.6 then final answer is	
	<u>(63 x 70 + (65 x 30)</u> / <u>4410 +</u>	incorrectly rounded to 63.5/63 (2)	
	<u>1950</u>	-	
	100 100	Ignore any unit e.g. g	
	44.1 + 19.5/ <u>441+ 195</u> (1) (=		
	63.6)	Allow TE for third mark	
	10	e.g if percentages used the wrong	
		way round 64.4 scores (1)	

Question Number	Answer	Acceptable answers	Mark
4(b)(i)		Reject any reference to a covalent bond or sharing electrons (0)	(2)
	 two electrons/ 2e⁽⁻⁾ (1) 	$\begin{array}{l} Cu \to Cu^{2+} + 2e^{(-)} \\ \textbf{or} \\ Cu - 2e^{(-)} \to Cu^{2+} \\ Allow + 2 \text{ for charge} \end{array}$	
	 {loses/gives away} electrons (1) 	Allow transfers electrons to another atom (1) Allow electrons taken away (1) Ignore electrons are missing Ignore references to the nitrate ion/other non-metals Ignore references to full outer shell	

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	Cu(NO ₃) ₂	Formula must be totally correct including subscripts, letter case and brackets	(1)
		Allow Cu ²⁺ (NO ₃ ⁻) ₂ Ignore any balancing numbers in front of formula Ignore any working/attempted equation to find the formula	

Total for Question 4 = 11 marks

Question Number	Answer	Acceptable answers	Mark
6(a)	Fe Cl 2.8/56 3.55/35.5 (1) 0.05 0.1 or 1 2 (1) FeCl ₂ (1)	Cl ₂ Fe FeCl ₂ with no working (3) Consequential errors: if "upside down" ie 56 / 2.8 and 35.5 / 3.55 ratio 20 : 10 or 2 : 1 (1) empirical formula Fe ₂ Cl (1) allow 3 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1 : 1 empirical formula FeCl ₂ allow 2 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1 : 1 empirical formula FeCl allow 2 marks for Fe Cl 2.8/56 3.55/35.5 (1) 0.5 0.1 (0) Fe ₅ Cl (1) - ECF	(3)

Question Number	Answer	Acceptable answers	Mark
6(b)	EITHER 2x23 (1) g Na makes 2x58.5 (1) g NaCl	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0)	
	9.2 g Na makes (<u>2x58.5)x9.2</u> g NaCl 46		
	(= 23.4 g)	(= 0.4)	
	OR 23 g Na makes 58.5 (1) g NaCl	mol NaCl = 0.4 (1)	
	9.2 g Na makes (<u>58.5)x9.2(</u> 1) g	mass NaCl = $0.4 \times 58.5 (1)$	
	NaCl 23(1)	(= 23.4 g)	
	(1) (= 23.4 g)	Ignore units throughout unless incorrect	
	mark consequentially eg	mark consequentially awarding 2 marks for 46.8 g,11.7 g and 16.3 g (see last example opposite).	
	46 (1) g Na makes (2x23+35.5) (0) g NaCl		
	9.2 g Na makes (<u>2x23+35.5)x9.2</u> (1) g NaCl 46		
	(= 16.3 g)		(3)

Question number	Answer	Acceptable answers Mark	
4 (c)	$\frac{12.7}{63.5} = (0.2)$ and $\frac{3.2}{32} = (0.1)$ (1)	reject $\frac{63.5}{12.7} = 5$ and $\frac{32}{3.2} = 10$	
	2:1 (1)	allow ECF	
		allow Cu_2S with incorrect or no working (1)	
	Cu ₂ S (1)	allow SCu ₂	
			(3)

Question	Answer	Acceptable	Marks
number	AllSwei	answers	Marks
4 (d)	25.4 g copper = $\frac{25.4 \times 159}{127}$ = (31.8) (2) OR	31.8 / 31.75 alone gains 2 marks	
	25.4 g copper give = $\frac{25.4 \times 79.5}{63.5}$ = (31.8) (2)		
	$\frac{159}{127} = (1.2519) (1)$		
	x 25.4 = (31.8) (1)		
	OR		
	$\frac{79.5}{63.5} = (1.2519) (1)$		
	x 25.4 = (31.8) (1)	allow working using moles	
		$\frac{25.4}{(1)} = (0.4)$ 63.5	
		0.4 x 79.5 = (31.8) (1)	
		OR	
		<u>25.4</u> = (0.2) (1) 127	
		0.2 x 159 = (31.8) (1)	
		If no other mark scored allow {2 x 63.5 g / 127} copper gives {2 x 79.5 g /159} copper oxide (1)	
			(2)

(Total for Question 4 = 10 marks)

Question Indicative Content		Mark	
QWC	*5d	An explanation to include some of the following points	
çııc	54	 neon-22 has 10 protons 12 neutrons 10 electrons protons and neutrons in nucleus electrons surround nucleus electrons in shells/energy levels/2.8 same number of protons and electrons different number of neutrons 	
		 relative atomic mass is the average mass of an atom in the sample / represents (a weighted mean of) a mixture of the two isotopes more neon-20 than neon-22 neon-20 less mass than neon-22 (therefore) relative atomic mass closer to -20 20 x 90 (=1800) 22 x 10 (=220) 1800 + 220 (=20.2) 100 	(6)
Leve	0	No rewardable content	
1	1 - 2	 A limited explanation of the structure of neon-22 the answer communicates ideas using simple language and u limited scientific terminology spelling, punctuation and grammar are used with limited according to the spelling of the structure of the structure of neon-22 	ses uracy
2	3 - 4	 A simple discussion of EITHER the structure of neon-22 and a qualitative treatment of the relative atomic mass OR a quantitative treatment of relative atomic mass of the sample OR a detailed discussion of the structure of the atom. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy 	
3	5 - 6	 A detailed explanation of why the relative atomic mass is 20.2 and a description of the atomic structure of neon 22 OR a qualitative discussion of why the relative atomic mass is 20.2 and a detailed discussion of the atomic structure. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors 	
		(Total for Question 5 = 12 mar	ks)