Question number	Answer	Additional guidance	Mark
2(a)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): a negative ion must have more electrons than protons in the particle (1) therefore Z will have a 2-charge (1)	Do not allow any comparison involving neutrons.	

Question number	Answer	Additional guidance	Mark
2(b)	$40+2 \times(14+16 \times 3)(1)$ $=164(1)$	Award full marks for correct numerical answer without working.	(2)

Question number	Answer	Mark
$\mathbf{2 (c)}$	\bullet Li ion with empty outer shell (1)	
	\bullet 1+ charge on Li (1)	
	•electrons on outer shell of F (1) $1-$ charge on F (1)	(4)

Question number	Answer	Mark
3(a)(i)	C	(1)

Question number	Answer	Mark
3(a)(ii)	C	(1)

Question number	Answer	Mark
$\mathbf{3 (b)}$	Any two of the following points. For the acid, use the same: \bullet volume (1) • concentration (1) - temperature (1)	

Question number	Answer	Mark
$\mathbf{3 (c) (i)}$	electrolysis (1)	(1)

Question number	Answer	Mark
$\mathbf{3 (c) (i i)}$	An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification- understanding (1 mark) • aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce aluminium from its ore (1)	(2)

Question number	Answer	Mark
3(d)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ $\vdots \quad$ Correct formulae (1) $\bullet \quad$ Balancing of correct formulae (1)	

Question number	Answer			Mark
4(a)	salt soluble insoluble			
	ammonium chloride	\checkmark		
	lithium sulfate	\checkmark		
	magnesium carbonate		\checkmark	
	- All three correct (2) - Any two correct (1)			(2)

Question number	Answer	Additional guidance	Mark
4(b)	- mass values in correct places (1) - multiplication by 100 (1) - correct final answer to two significant figures (1)	$\begin{aligned} & \frac{2.53}{2.85} \times 100=88.8 \% \\ & 89 \% \text { (to } 2 \text { s.f.) } \end{aligned}$ Award full marks for correct numerical answer without working.	(3)

Question number	Answer	Mark
4(c)	An explanation that combines identification - improvement of the experimental procedure (maximum 2 marks) and justification/reasoning, which must be linked to the improvement (maximum 2 marks): - add excess sodium sulfate solution rather than a few drops (1) - so more reaction occurs to form more lead sulfate (1) - filter the reaction mixture rather than pour off the liquid(1) - so none of the lead sulfate is lost on separation(1) - wash the lead sulfate (1) - so the impurities are removed (1) - place the lead sulfate in an oven/warm place (1) - so the lead sulfate is dry (1)	(4)

Question number	Answer	Mark
4(d)	volumes of solution too large for titration method (1) large volumes of liquid need to be heated and then allowed to crystallise (1)	(2)

Question number	Answer	Mark
5(a)(i)	C	(1)

Question number	Answer		Mark
5(a)(ii)	C		(1)
Question number	Answer		Mark
5(b)	reactants are being used up (1)		(1)
Question number	Answer		Mark
5(c)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): aluminium and copper have different size atoms (1) and so this prevents the layers of metal atoms from sliding over one another (1)		(2)
Question number	Answer	Additional guidance	Mark
5(d)	proportion gold $=9 \div 24$ (=0.375) (1) $\text { mass }=0.375 \times 12=4.5(\mathrm{~g})(1)$	Award full marks for correct numerical answer without working.	(2)
Question number	Answer		Mark
6(a)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): - J and K are electrolytes (1) - because their solutions conduct electricity and are decomposed (1)		(2)
Question number	Answer		Mark
6(b)	D		(1)
Question number	Answer		Mark
6(c)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): hydrogen $\left(\mathrm{H}^{+}\right)$and sodium $\left(\mathrm{Na}^{+}\right)$ions attracted to cathode, hydroxide $\left(\mathrm{OH}^{-}\right)$ions and sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ ions attracted to anode (1) - because the ions are attracted to the oppositely charged electrode (1) - 2 hydrogen ions $/ 2 \mathrm{H}^{+}$accept 2 e to form hydrogen molecule/ H_{2} (1) - 4 hydroxide ions $/ 4 \mathrm{OH}^{-}$lose 4 e to form oxygen molecule/ O_{2} (1)		(4)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (a) (i)}$	•particles are same size when they should be different sizes (1) model is in 2D but crystal is 3D (1)Allow reverse statements giving correct information.		

Question number	Answer	Mark
$\mathbf{8 (a) (i i)}$	An explanation that combines identification - knowledge (1 mark) and reasoning/justification - understanding (2 marks): very strong bonds/ionically bonded (1) - between 2+ cations and 2- anions (1) so requires lot of energy to separate magnesium and oxide ions to melt the solid (1)	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (i)}$	$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ $+\mathrm{CO}_{2}$ - all formulae on correct side (2) balancing (1)	Allow 3/4 formulae (1)	(3)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (b) (\text { ii) }}$	relative formula mass copper carbonate $=63.5+12.0+(3 \times 16.0)$ $=123.5$ relative formula mass copper oxide $=63.5+16.0$ $=79.5(1)$	Award full marks for correct numerical answer without working.	
	mass copper oxide $=\frac{15.0 \times 79.5}{123.5}=9.7 \mathrm{~g}$ to 2 s.f. (1)		
Answer must be to two significant figures OR moles of copper carbonate $=\frac{15.0}{123.5}=0.12145$ (1) mass of copper oxide $=$ moles CuCO $\times 79.5$ $=9.7 \mathrm{~g}$ to 2 sf (1) Answer must be to two significant figures			

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c)}$	$2.4 / 24$ moles $\mathrm{Mg}=0.1 \mathrm{~mol}(1)$	Award full marks for correct numerical answer without	
	and 0.2 moles $\mathrm{H}_{2} \mathrm{O}$ has mass $0.2 \times$ formula mass $\mathrm{H}_{2} \mathrm{O}=3.6 \mathrm{~g}$ (1) working.		
	total mass reactants $=2.4+3.6=$ 6.0 g is the same as total mass products $=5.8+0.2=$ $6.0 \mathrm{~g} \mathrm{(1)}$		(3)

Question number	Answer	Mark
9(a)(i)	An explanation that makes reference to: identification - knowledge (1 mark) and reasoning /justification - knowledge (1 mark): a strong acid is completely ionised in solution/exists completely as ions (1) but a weak acid is only partly ionised/exists mainly as molecules with very few ions present (1)	

Question number	Answer	Mark
9(a)(ii)	hydroxide ions react with hydrogen ions and reduce the hydrogen ion concentration therefore increase pH (1)	(1)

Question number	Answer	Mark
9(b)	$\mathrm{ZnO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \bullet zinc nitrate formula (1) - full, balanced equation (1)	

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (c)}$	mass $=50 \times \frac{40}{1000}(1)=2(\mathrm{~g})(1)$	Award full marks for correct numerical answer without working.	$(\mathbf{2)}$

Question number	Answer	Additional guidance	Mark
10(a)	Formula mass ammonium chloride $=14.0+4.00+35.5=53.5$ moles of ammonium chloride $\begin{equation*} =\frac{10.0}{53.5}=0.187 \tag{1} \end{equation*}$ volume ammonia $\begin{aligned} & =0.187 \times 24 \\ & =4.49 \mathrm{dm}^{3}(1) \end{aligned}$ or $2 \times 53.5=107 \mathrm{~g}$ ammonium chloride produces $2 \times 24=$ $48 \mathrm{dm}^{3}$ ammonia (1) - 10.0 g ammonium chloride produces $\frac{10.0}{2 \times 53.5} \times 2 \times 24=4.49 \mathrm{dm}^{3}$	Award full marks for correct numerical answer without working.	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b) (i)}$	$25 \div 1000 \times 0.1=0.0025$ (1)		
	$35 \div 1000 \times 0.075=0.002625$		
(1)	Third mark only awarded The acid is in excess (1) calculated data. from	(3)	

Question number	Answer	Mark
$\mathbf{1 0 (b) (i i)}$	$\frac{36.20+36.30}{2}=36.25(1)$	(1)

Question number	Answer	Mark
$\mathbf{1 0 (b) (\text { iii })}$	D	(1)

Question number	Answer	Additional guidance	Mark
10(c)	$\begin{aligned} & \mathrm{mol} \text { of acid }=24.80 \div 1000 \times \\ & 0.200(=0.00496 \mathrm{~mol})(1) \\ & \mathrm{mol} \mathrm{NaOH}=2 \times 0.00496 \\ & (=0.00992)(1) \\ & \text { conc. of } \mathrm{NaOH}=0.00992 \div 25.0 \\ & \times 1000(1) \\ & =0.3968 / 0.397\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \\ & \text { or } \\ & (25.00 \times \text { conc } \mathrm{NaOH}) \div 2=24.80 \\ & \times 0.200(2) \\ & \begin{array}{l} \text { conc } \mathrm{NaOH}=2 \times 24.80 \times 0.200 \div \\ 25.00(1) \\ =0.3968 / 0.397\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1) \end{array} \end{aligned}$	Award full marks for correct numerical answer without working. Allow max 3 marks if missing ' $2 \times$ ' in step 2.	(4)

Question Number	Answer	Acceptable answers	Mark
4(a)	D		
			(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	the mass (of product) is calculated (from the balanced equation) (1)		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	$\begin{aligned} & \frac{\text { actual yield }}{\text { theoretical yield }} / \frac{2.8}{4.0} \\ & \times 100(1) \end{aligned}$	allow formula described in words	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(iii)	Any two from the following points -loss of product during experiment (1) - reaction does not complete (1) - not enough carbon in mixture (1) - other (unwanted) reactions occur (1)		

Question Number	Answer	Acceptable answers	Mark
4 (c)	$63.5+(2 \times 35.5) / 134.5(1)$		(1)

Question Number	Answer	Acceptable answers	Mark
4 (d)	$\begin{aligned} & \text { - mass of oxygen }=14.3-12.7 \text { (1) } \\ & \quad=1.6 \\ & \text { copper atoms: oxygen atoms }= \\ & 12.7 / 63.5: 1.6 / 16(1) \\ & 0.2: 0.1 \\ & \text { - } \mathrm{Cu}_{2} \mathrm{O}(1) \\ & \hline \end{aligned}$		(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (\mathbf { i) }}$	$\mathrm{C} \mathrm{CuCl}_{2}$		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	An explanation linking the following points Either - the amount of product calculated (1) - using the equation (for the reaction) (1) Or - the maximum amount of \{product / copper chloride\} (1) - when all \{reactant / copper\} reacts (1)	using reacting masses amount of product when all \{reactant / copper\} reacts (2)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (b) (\mathbf { i) }}$	$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeBr}_{3}(\mathrm{~s})$ reactant formulae (1) balancing correct formulae		
	(1) state symbols (1) s and g must be lower case	allow state symbol mark even if other marks not awarded	(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	$56+(3 \times 80)(1)$ $=296$	give full marks for correct answer with no working	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(iii)	ratio: $56 / 310(1)$		
	$\%$ iron $56 / 310 \times 100(\%)(1)$		
$(=18(\%))$	any number/310 4ive full marks for correct answer gith no working with	(2)	

Question Number	Answer	Acceptable answers	Mark
4(b)(iv)	HO	$\mathrm{OH}, \mathrm{O}_{1} \mathrm{H}_{1}, \mathrm{H}_{1} \mathrm{O}_{1}$	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	shared pair of electrons (between two atoms)	two shared electrons reject between two or more atoms	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	D it has a low boiling point		(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	An description including three of the following points - cool (to about $-200^{\circ} \mathrm{C}$) / liquefy (air) (1) - fractional distillation (1) - allow to warm / heat (1) - \{nitrogen / lower boiling point\} obtained from top of column (1) - \{oxygen / higher boiling point\} obtained from bottom of column (1)	mention of fractionating column/ fractionation ignore state of nitrogen ignore state of oxygen can be separated because they have different boiling points(1) alternative to last two points	(3)

Question Number	Answer	Acceptable answers	Mark
4(a)	to allow air/oxygen in	to ensure magnesium reacts/burns / combusts	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	all points correctly plotted to half a small square (2) line of best fit (1)	Allow one mark for four or five correctly plotted points ecf their points	(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	Any one from	(1)	
	not all magnesium \{burned / reacted\} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)	

Question Number	Answer	Acceptable answers	Mark
4(c)	$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
4(d)	$0.414 / 207$ or $0.064 / 16(1)$ $0.002: 0.004$ or $1: 2(1)$ empirical formula $\mathrm{PbO}_{2}(1)$	if $207 / 0.414$ and $16 / 0.064$ ratio $500: 250$ or $2: 1(1)$ empirical formula $\mathrm{Pb}_{2} \mathrm{O}(1)$	(3)
		allow 3 marks for $0.414 / 207$ or $0.064 / 32$ ratio $1: 1$ empirical formula PbO_{2}	
		allow 2 marks for if $0.414 / 207$ and $0.064 / 32$ ratio $1: 1$ empirical formula PbO	

Question Number	Answers	Acceptable Answers	Mark
2(a)(i)	A displacement		(1)

Question Number	Answers	Acceptable Answers	Mark		
$\mathbf{2 (a) (i i)}$	orange	Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours	(1)		
Reject other colours combined with					
these e.g. yellow-green				\quad	
:---					

Question Number	Answers	Acceptable Answers	Mark
2(b)	C		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c)}$	$\left(\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow\right) 2 \mathrm{HBr}$ • correct formula for HBr (1) • balancing of correct formulae (1)	Ignore state symbols Allow BrH (1)	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (d)}$	$[24+2 \times 35.5]$ (1) (=95)	95 with no working $[24+2 \times 35.5]$ with no answer or an incorrect answer scores (1)	(1)

Question Number	Answers	Acceptable Answers	Mark
2(e)	- relative formula mass $=[23+$ 19] (1) (= 42) - [(19/their relative formula mass) x100] (1) (=45.2(\%)) consequential on their relative formula mass	$\begin{aligned} & (19 / 42) \times 100(2)(=45.2(\%)) \\ & (19 /[19+23]) \times 100(2)(=45.2 \\ & (\%)) \\ & 45 / 45.2(\%) \text { with no working (2) } \\ & \text { Ignore additional significant figures } \\ & \text { Allow } 42 \text { seen in working (1) } \\ & \text { Allow }(19 / 23) \times 100=\{82.6 \% / \\ & 83 \%\}(\mathbf{1}) \end{aligned}$	(2)

Question Number	Answer	Acceptable answers	Mark
4(a)(iv)	- (in 100 atoms) mass of copper-63 atoms $=$ $63 \times 70 / 63 \times 0.7 / 63 \times 7$ (1) $(=4410 / 44.1 / 441)$ - mass of copper-65 atoms = $65 \times 30 / 65 \times 0.3 / 65 \times 3$ (1) ($=1950 / 19.5 / 195)$	63.6 with no working (3) 63.5/64 with no working (0) Allow correct working shown to calculate 63.6 then final answer is rounded to 64 (3) Note: correct working shown to calculate 63.6 then final answer is incorrectly rounded to $63.5 / 63$ (2) Ignore any unit e.g. g Allow TE for third mark e.g if percentages used the wrong way round 64.4 scores (1)	(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	• two electrons/ $2 \mathrm{e}^{(-)} \mathbf{(1)}$	Reject any reference to a covalent bond or sharing electrons (0) $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)}$ or $\mathrm{Cu}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{2+}$ (2) Allow +2 for charge	(2)
	- \{loses/gives away\} electrons (1)	Allow transfers electrons to another atom (1) Allow electrons taken away (1) Ignore electrons are missing Ignore references to the nitrate ion/other non-metals Ignore references to full outer shell	

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	Formula must be totally correct including subscripts, letter case and brackets Allow $\mathrm{Cu}^{2+}\left(\mathrm{NO}_{3}{ }^{-}\right)_{2}$ Ignore any balancing numbers in front of formula Ignore any working/attempted equation to find the formula	(1)

Total for Question 4 = 11 marks

Question Number	Answer	Acceptable answers	Mark
6(a)	Fe Cl $2.8 / 56$ $3.55 / 35.5$ (1) 0.05 0.1 or 1 2 (1) $\mathrm{FeCl}_{2}(1)$	```\(\mathrm{Cl}_{2} \mathrm{Fe}\) \(\mathrm{FeCl}_{2}\) with no working (3) Consequential errors: if "upside down" ie 56 / 2.8 and 35.5 / 3.55 ratio \(20: 10\) or \(2: 1\) (1) empirical formula \(\mathrm{Fe}_{2} \mathrm{Cl}\) (1) allow 3 marks for \(2.8 / 56\) and 3.55 / 71 ratio 0.05 : 0.05 or \(1: 1\) empirical formula \(\mathrm{FeCl}_{2}\) allow 2 marks for \(2.8 / 56\) and \(3.55 / 71\) ratio 0.05 : 0.05 or \(1: 1\) empirical formula FeCl allow 2 marks for \(\begin{array}{lc}\mathrm{Fe} & \mathrm{Cl} \\ 2.8 / 56 & 3.55 / 35.5 \\ 0.5 & 0.1 \quad(0) \\ \mathrm{Fe}_{5} \mathrm{Cl}(1)-\mathrm{ECF} & \end{array}\)```	(3)

Question Number	Answer	Acceptable answers	Mark
6(b)	EITHER 2×23 (1) g Na makes 2×58.5 (1) g NaCl $\begin{array}{r} 9.2 \mathrm{~g} \text { Na makes } \frac{(2 \times 58.5) \times 9.2 \mathrm{~g} \mathrm{NaCl}}{46} \\ (=23.4 \mathrm{~g}) \tag{1} \end{array}$ OR 23 g Na makes 58.5 (1) g NaCl 9.2 g Na makes (58.5) x9.2(1) g NaCl 23(1) $(=23.4 \mathrm{~g})$ mark consequentially eg 46 (1) g Na makes ($2 \times 23+35.5$) (0) g NaCl 9.2 g Na makes $\frac{(2 \times 23+35.5) \times 9.2}{46}$ (1) g NaCl $(=16.3 \mathrm{~g})$	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0) mol Na used $=9.2 / 23(1)(=$ 0.4) $\mathrm{mol} \mathrm{NaCl}=0.4$ mass $\mathrm{NaCl}=0.4 \times 58.5(1)$ $(=23.4 \mathrm{~g})$ Ignore units throughout unless incorrect mark consequentially awarding 2 marks for 46.8 $\mathrm{g}, 11.7 \mathrm{~g}$ and 16.3 g (see last example opposite).	(3)

| $\begin{array}{c}\text { Question } \\ \text { number }\end{array}$ | Answer | Acceptable answers | Marks |
| :--- | :--- | :--- | :--- | :---: |
| 4 (c) | $\frac{12.7}{63.5}=(0.2)$ and $\frac{3.2}{32}=(0.1) \quad(1)$ | reject $\frac{63.5}{12.7}=5$ and $\frac{32}{3.2}=10$ | |
| | $2: 1 \quad(1)$ | allow ECF | |
| allow $\mathrm{Cu}_{2} \mathrm{~S}$ with incorrect | | | |
| or no working (1) | | | |
| allow SCu_{2} | | | |$]$

Question number	Answer	Acceptable answers	Marks
4 (d)	$\begin{aligned} & 25.4 \mathrm{~g} \text { copper }=\frac{25.4 \times 159}{127}=(31.8) \\ & \text { OR } \\ & 25.4 \mathrm{~g} \text { copper give }=\frac{25.4 \times 79.5}{63.5}=(31.8)(2) \\ & \frac{159}{127}=(1.2519)(1) \\ & \times 25.4=(31.8)(1) \end{aligned}$ OR $\begin{aligned} & \frac{79.5}{63.5}=(1.2519)(1) \\ & \times 25.4=(31.8)(1) \end{aligned}$	$31.8 / 31.75$ alone gains 2 marks allow working using moles $\begin{aligned} & \frac{25.4}{(1)}=(0.4) \\ & 63.5 \\ & 0.4 \times 79.5= \\ & (31.8)(1) \end{aligned}$ OR $\begin{aligned} & \frac{25.4}{(1)}=(0.2) \\ & 127 \\ & 0.2 \times 159= \\ & (31.8)(1) \end{aligned}$ If no other mark scored allow \{2 x $63.5 \mathrm{~g} / 127\}$ copper gives $\{2 \times 79.5 \mathrm{~g}$ /159\} copper oxide (1)	
			(2)

Question Number		Indicative Content	Mark
QWC	*5d	An explanation to include some of the following points neon-22 has - 10 protons - 12 neutrons - 10 electrons - protons and neutrons in nucleus - electrons surround nucleus - electrons in shells/energy levels/2.8 - same number of - protons and electrons - different number of neutrons relative atomic mass - is the average mass of an atom in the sample / represents (a weighted mean of) a mixture of the two isotopes - more neon-20 than neon-22 - neon-20 less mass than neon-22 - (therefore) relative atomic mass closer to -20 - $20 \times 90(=1800)$ - $22 \times 10(=220)$ - $\frac{1800+220}{100} \quad(=20.2)$	(6)
$\begin{array}{\|l} \hline \text { Leve } \\ \text { I } \\ \hline \end{array}$	0	No rewardable content	
1	1-2	- A limited explanation of the structure of neon-22 - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited ac	s acy
2	3-4	- A simple discussion of EITHER the structure of neon-22 and qualitative treatment of the relative atomic mass $O R$ a quan treatment of relative atomic mass of the sample OR a detailed discussion of the structure of the atom. - the answer communicates ideas showing some evidence of cla and organisation and uses scientific terminology appropriate - spelling, punctuation and grammar are used with some accu	tative d arity acy
3	5-6	- A detailed explanation of why the relative atomic mass is 20 a description of the atomic structure of neon 22 OR a qualita discussion of why the relative atomic mass is 20.2 and a det discussion of the atomic structure. - the answer communicates ideas clearly and coherently uses of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	2 and ive iled range

(Total for Question 5 = 12 marks)

