| Question number | Answer |  | Mark |
| :---: | :---: | :---: | :---: |
| 5(c) | Correctly identifies data points from the graph to calculate areas (1) <br> Calculates area under AB (1) $240 \text { m }$ <br> Calculates area under CD (1) $135 \text { m }$ <br> distance travelled at constant speed $=240 \mathrm{~m}$ is greater than distance travelled when slowing down $=135 \mathrm{~m}$ (1) |  | (4) |
| Question number | Answer |  | Mark |
| 6(a) | B |  | (1) |
| Question number | Answer | Additional guidance | Mark |
| 6(b)(i) | The time taken for the activity of a radioactive nuclide to halve (1) | accept for nuclide: isotope sample | (1) |
| Question number | Answer | Additional guidance | Mark |
| 6(b)(ii) | Determines number of half-lives and rounds (1) $263 / 87.7=3$ <br> Determines that 3 half-lives is $1 / 2 \times 1 / 2 \times 1 / 2=1 / 8(1)$ <br> Determines mass of Pu-238 after 3 half-lives (1) $925 / 8=115.625(\mathrm{~g})$ <br> Determines average energy released per second (1) $115.625 \times 0.54=62.4(\mathrm{~J})$ | allow repeated division by 2 allow ecf from step 2 for 1 mark (mass of Pu-238 after1 half-life $925 / 2=462.5(\mathrm{~g})$ ) <br> allow ecf from 1 half-life or from step 3 | (4) |


| Question number | Answer |  | Mark |
| :---: | :---: | :---: | :---: |
| 6(c)(i) | An answer that combines the following points of application of knowledge and understanding to provide a logical description: <br> - proton number/atomic number decreases by 1 (1) <br> - nucleon number/mass number remains unchanged (as p and n have same mass and mass of electron is (assumed) negligible) (1) |  | (2) |
| Question number | Answer |  | Mark |
| 6(c)(ii) | C |  | (1) |
| Question number | Answer ${ }^{\text {a }}$ Additional guidance |  | Mark |
| 7(a) | An answer that combines the following points of understanding to provide a logical description: <br> - measurement of time between(or at) two positions using suitable timing equipment (1) <br> - measurement of suitable distance along the runway with metre rule (1) <br> - measurement of vertical height to starting position (1) <br> - repeats AND averages AND use of a correct equation (1) | allow <br> stopwatch, light gates <br> minimum is 0.5 m metal tape measure <br> average speed = distance/time <br> OR average speed $=$ (speed at A - speed at B)/2 | (4) |


| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 9(c) | Substitution into $v=\frac{s}{t}$ to find $v(1)$ $v=\frac{1.5 \times 10^{11}}{500}$ <br> Substitution into $v=f \times \lambda$ and unit conversion (1) $v=\frac{1.5 \times 10^{11}}{500}=f \times 670 \times 10^{-9}$ <br> Transposition (1) Rearrangement (1) $f=\frac{\left(1.50 \times 10^{11}\right)}{500 \times\left(670 \times 10^{-9}\right)}$ <br> Answer (1) $4.5 \times 10^{14}(\mathrm{~Hz})$ | $s$ is distance <br> award full marks for correct numerical answer without working <br> maximum 3 marks if $\lambda$ in nm <br> $4.4776 \times 10^{14}(\mathrm{~Hz})$ | (4) |


| Question number | Answer | Additional guidance | Mark |
| :---: | :---: | :---: | :---: |
| 10(a)(i) | An explanation that combines identification - knowledge (1 mark) and reasoning/justification knowledge (3 marks): <br> - causes 2 or 3 neutrons to be released (1) <br> - (and) one or more of these (released) neutrons are absorbed by other (U) nuclei (1) <br> - which cause further fission of $U$ nuclei (1) <br> - and release further neutrons that can be absorbed, causing a chain reaction (1) | ignore U nucleus 'splits up'/eq | (4) |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( a ) ( i i )}$ | Idea that to get a chain reaction the particle that impacts <br> the nucleus must be the same as the one released (1) | (1) |


| Question <br> number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 0 ( b )}$ | An explanation that combines <br> identification - knowledge (1 <br> mark) and <br> reasoning/justification - <br> knowledge (2 marks): <br> - reaction will slow down | allow |  |
| (1) <br> because there are fewer <br> fissions (1) <br> because fission more <br> likely with slow neutrons <br> (1) | reactor shuts down/eq <br> fission requires slow <br> neutrons <br> thermal neutrons for slow <br> neutrons | (3) |  |


| Question <br> number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 0 ( c )}$ | An answer that combines the following points of <br> understanding to provide a logical description: | (the reactor is surrounded by a coolant (1) <br> - the thermal energy release from the chain reaction heats <br> the coolant (1) <br> the hot coolant is used to generate steam which is used <br> to drive the turbine (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | A description including the following <br> points <br> $\bullet$ steam \{drives/turns \} turbine (1) |  |  |
|  | (which) \{drives/turns/powers \} | generator (1) <br> transfers ke to electrical <br> energy <br> rotates a magnet in coils <br> or coils in magnet <br> accept dynamo for <br> generator | (2) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 4(b) | A description including the following points <br> - neutron \{hits / splits / is absorbed by\} uranium (nucleus) (1) <br> - producing more neutrons (1) <br> - at least one neutron can $\{$ hit / split / be absorbed by\} other uranium (nuclei) (1) | full marks may be scored on a labelled diagram <br> fired at other $U$ (nuclei) or "process repeats" | (3) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(c) | A krypton-91 |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(d) | An explanation linking the following <br> points <br> $\bullet$ removes electrons (1) |  |  |
| - from atoms (1) | collides with atoms <br> ignore references to $\beta$ <br> decay process (nucleus <br> losing an electron) | (2) |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(e) | An explanation linking the following <br> points | ignore references to high <br> temp and pressure | nuclei are positively charged <br> (1) |
| accept same charge <br> accept protons for nuclei <br> accept atoms <br> need enough energy to | and will repel each other |  |  |$\quad$| (2) |
| :--- |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ( a )}$ | A |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 5(b) | distance travelled = area under <br> graph (1) <br> substitution (1) <br> $1 / 2 \times 20 \times 2$ <br> evaluation (1) <br> $20(\mathrm{~m})$ | distance = average speed <br> $\times$ time <br> $=10 \times 2$ |  |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 6(a) | An explanation linking the following points <br> - small percentage / amount of material (1) <br> - activity level low / less than background <br> (1) | radiation/radioactivity for activity within safe limits | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( \mathbf { i } )}$ | B 50 days |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i i ) ~}$ | 12.5 | $10-15$ | (1) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 6(c) | An explanation linking the following points <br> - time for halving (1) <br> - clear as to what is halving (1) | Allow for atoms: isotope / element / nuclei / (radioactive) substance /particles/(radioactive) material/radiation/count rate/Bq/activity/radioactivity <br> time for half of the atoms to decay (2) <br> time for the activity/count rate to drop to half (of original value) (2) <br> time for $1 / 2$ of it to decay (1) | (2) |


| Question Number |  | Indicative Content | Mark |
| :---: | :---: | :---: | :---: |
| QWC | *6(d) | A discussion including some of the following points <br> Model components related to actual machine <br> - lamp - radioactive source ( $\beta$ - source) <br> - sensor (LDR) - Geiger counter arrangement <br> - card - liquid in bottle <br> Interaction of components related to working of machine <br> - rising of card - more liquid in bottle <br> - rising of card - less light <br> - higher resistance <br> - smaller current / reading <br> - circuit switches on if too much light <br> - greater absorption gives less radiation to detect <br> - machine discards bottle if too little liquid, model does not | (6) |
| Level | 0 | No rewardable content |  |
| 1 | 1-2 | - a limited discussion comparing some of the indicative cont two of the lamp, sensor and card are related to the source counter and liquid respectively. <br> - the answer communicates ideas using simple language and limited scientific terminology <br> - spelling, punctuation and grammar are used with limited a | E.g. eiger) <br> ses <br> racy |
| 2 | 3-4 | - a simple discussion comparing parts of the process. E.g. lamp, sensor and card are related to the source Geiger cou liquid respectively. The rising of the card gives more liquid bottle. <br> - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropria <br> - spelling, punctuation and grammar are used with some ac | of the er and the <br> arity |
| 3 | 5-6 | a detailed discussion of the whole process. E.g. the lamp, and card are related to the source Geiger counter and liquid respectively. The rising of the card gives more liquid in bott much light/ radiation getting through starts the alarm. <br> the answer communicates ideas clearly and coherently uses of scientific terminology accurately <br> - spelling, punctuation and grammar are used with few error | sor <br> Too <br> range |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 ( a ) ( i )}$ | B |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Acceptable answers | Mark |  |
| :--- | :--- | :--- | :--- | :--- |
| 2(a) (ii) | Any one of the following <br> Rocks <br> Food <br> Radon gas <br> Cosmic rays <br> Own bodies <br> Fall-out <br> Sun/stars | (1) | Plausible named food such as <br> coffee, brazil nut, bananas <br> Space | (1) |
|  | Specified medical/industrial use <br> of x-rays | Ignore smoke alarms, power <br> stations (in normal use) |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 2(a) (iii) | An explanation linking <br> - personal circumstances such as geographical location nature of their work lifestyle <br> - the consequences such as radiation from radon gas/particular rocks/fallout (eg Chernobyl) greater exposure to x-rays greater exposure to cosmic rays |  | (2) |


| Question | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| Number |  |  | (1) |
| 2(a) (iv) | D |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) (i) | From the graph Time taken to fall (from 120 to) | Any other suitable pair of <br> readings from graph | (2) |
|  | 60 | (1) | $8.1,8.2$ |
|  | (1) | Full marks for correct answer <br> even if no working is evident |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) (ii) | 2.2 (days) | between 2.0 and 2.5 <br> 2 | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 2(b) (iii) | Any one of the following: <br> $\bullet$ Mutation of dna <br> $\bullet$ (Inisation of cells <br> $\bullet$ (Increases risk of) cancer (1) | damage / mutate cells |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 ( a ) ( i )}$ | B |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 3(a) (ii) | (equivalent to a) helium nucleus | Two protons and two neutrons <br> for 2 marks <br> helium/mass of 4 for 1 mark <br> charge of +2 for 1 mark <br> correct statement of any <br> property for 1 mark | (2) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 3 (b) | A description to include any four of the following <br> - neutron <br> - is captured by a U-235 nucleus <br> - nucleus (is) unstable <br> - nucleus splits <br> - into 2 daughter nuclei (of similar size) <br> - (2 or more) neutrons are released <br> - energy is released | - collides with /absorbed by (U-235) nucleus <br> - metastable <br> - named isotopes | (4) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 3 (c) | An explanation linking <br> e moderator slows down <br> (absorbs energy from) <br> neutrons |  |  |
| - more likely to be captured <br> /cause fission (if it collides <br> with a U-235 nuclei) | Reverse argument | (2) |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | P and M | one mark for a pair |  |
|  | OR M and P |  |  |
|  | OR N and Q |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(b) | \{atomic /proton\} number drops <br> by 2 and \{mass/nucleon\} <br> number by 4 (1) | 2 protons and 2 neutrons are lost <br> $92 \rightarrow 90$ and $238 \rightarrow 234$ |  |
|  | (which is) alpha decay (1) | helium nucleus given off <br> (which is) alpha particle | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(c) | same $\{$ mass/nucleon\} number <br> but \{atomic/proton\} number <br> increases by 1 (1) | a neutron changes to a proton |  |
|  | (negative) beta decay (1) | ignore GAINS a proton <br> beta particle /electron given off | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(d)(i) | alpha | Alpha ray, alpha particle, $a$ <br> Ignore capital letters | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(d)(ii) | A description including two of <br> one increases as other increases <br> (1) | the particles with higher energy <br> travel further <br> accept values quoted from graph | rate of increase is in the range <br> from 1.17 to 1.33 (cm/MeV) (1) |
| range gradually increases more <br> with energy (1) | not (quite) linear/not <br> proportional /curves upwards <br> accept values quoted from graph | (2) |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(e) | chain reaction needs a neutron <br> from one fission to reach another <br> uranium nucleus/atom (at the <br> right speed) (1) | idea of continuous nature of <br> chain reaction |  |
| (fission of 238) needs <br> \{fast/high(er) energy\} neutrons <br> (1) | the neutrons would be going too <br> slowly /do not have enough <br> energy / lose energy too fast | (2) |  |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 6(a) | A description to include <br> - name of detector / move detector over the ground (1) <br> - where leak is, there will be an increased rate (1) | (move) until a \{leak/high reading\} is found | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 6(b) | D It is the time it takes for <br> half the atoms to decay |  | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( c ) i}$ | $1.9-2$ (days) |  | (1) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 6(c)ii |  |  |  |
|  |  <br> plotting $(0,40),(2,20)$ and $(4,10)$ <br> OR ANY line which passes through those coordinates <br> smooth curve through those points (1) | Ignore any part of line after 4 days | (2) |


| Question Number |  | Indicative Content ${ }^{\text {a }}$ Mark |
| :---: | :---: | :---: |
| QWC | *6(d) | An explanation including some of the following ideas <br> Need for measurement ( $\mathbf{N}$ ) <br> Background radiation <br> - is \{always present/all around us\} <br> - has (natural) source(s) exemplified by space, living things, rocks, food, nuclear/medical sources etc. <br> - would give false reading in experiment <br> How and why to measure(H) <br> Background radiation measurement <br> - is taken at site of experiment because it is different in different places <br> - is taken with all apparatus except source in place <br> - is taken before and after because \{it can change with time / they need an average\} <br> - \{must be worked out for same time as (or longer than) experiment / rate found\} so analysis is simpler <br> - It is \{taken several times/ averaged\} because it is random <br> Analysis (A) <br> Background radiation measurement <br> - must be subtracted from \{measurements with source /main count rate\} |
| Level | 0 | No rewardable content |
| 1 | 1-2 | - A limited explanation mentioning any two from N or one from H or A <br> e.g. Background comes from space and rocks.(N) It is there all the time. (N) <br> OR Readings for background must be repeated because they are random. (H) <br> OR Background must be taken away from all other readings (A) <br> - the answer communicates ideas using simple language and uses limited scientific terminology <br> - spelling, punctuation and grammar are used with limited accuracy |
| 2 | 3-4 | - A simple explanation linking aspects of two ideas i.e. $\mathbf{N}+\mathbf{H}$ OR $\quad \mathbf{N}+\mathbf{A} \quad$ OR $\quad \mathbf{H}+\mathbf{A}$ <br> e.g Take readings without source (H) and subtract them from the main readings with source present.(A) <br> OR It should be taken several times because it is random (H)so that the average can be subtracted from the main readings (A) <br> - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately <br> - spelling, punctuation and grammar are used with some accuracy |


| 3 | 5-6 | - A detailed explanation linking A with EITHER $\mathrm{N}+$ an idea from H <br> OR two or more <br> ideas from $\mathbf{H}$ <br> e.g.Background radiation is there all the time. (N) You need to take readings at the place where you will do the experiment and with all the apparatus set up except the source because BR changes from place to place.(H) Then you should subtract background readings from the main experimental readings. (A) <br> OR Take several readings of count rate for averaging since the effect is random $(\mathrm{H})$ and make sure that they are taken in the same place.(H) Then subtract from readings in main experiment.(A) <br> - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately <br> - spelling, punctuation and grammar are used with few errors |
| :---: | :---: | :---: |


| Question <br> Number | Answer |  | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | Three lines as shown: |  | Any one line correct only scores | (2) |
|  |  |  |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | An explanation linking ignore slow down neutrons <br> Absorb (more) neutrons (1)  <br> (to) reduce the number of fission <br> reactions (2) <br> slow down (the rate of) the <br> reaction/fission |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( c ) ( \mathbf { i } )}$ | B electrostatic repulsion of <br> protons |  | $\mathbf{( 1 )}$ |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 1(c)(ii) | A description to include <br> - (two/or more/smaller) nuclei combine/fuse/join (1) <br> - (to produce) a larger nucleus (1) | \{(two or more) hydrogen nuclei/protons OR deuterium and tritium\} combine/fuse (forming) helium nucleus <br> ONLY penalise use of atoms instead of nuclei ONCE <br> ignore references to release of energy as this is given earlier in the question. | (2) |

Total for Question 1 = 7 marks

| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 ( a ) ( \mathbf { i } )}$ | B $\mathbf{2 1}$ |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4 (a)(ii) | A | 39 |  |
|  | 19 | K |  |
|  |  |  | (1) |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 4(a)(iii) | A description to include any two of |  | (2) |
|  | - (nucleus/isotope is) |  |  |
|  | (nucleus/isotope is) radioactive (1) |  |  |
|  | decay is random (1) |  |  |
|  | - long half life (1) |  |  |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(i) | 1250 (million years) (1) | Between 1200 and $1300(\mathrm{my})$ <br> inclusive | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 4(b)(ii) | 2 half lives (1) | (2) |  |
|  | 2500 (million years) (1) | Allow ecf from (bi) <br> Give full marks for answer <br> between 2400 and 2600 with no <br> working. |  |


| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 4(c) | An explanation linking any three from <br> - Radon is radioactive (1) <br> - Radon can escape from rocks and buildings (1) <br> - Radon can be inhaled <br> - Radiation (from radon) can cause cancer <br> - Radon emits alpha | Ignore radiation from rocks themselves <br> Radon enters/gets trapped in buildings/homes / increases background radiation <br> (breathed into) lungs <br> (DNA) mutation / cell damage <br> (Highly) ionising radiation | (3) |

Total for Question 4 = 10 marks

| Question Number | Answer | Acceptable answers | Mark |
| :---: | :---: | :---: | :---: |
| 5 (a) (i) |  | All three correct for 2 marks <br> One or two only correct for 1 mark <br> Reject any box with more than one line | (2) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| 5(a)(ii) | A suggestion to include <br> Neutrons do not need to be <br> captured (by another nucleus) / <br> do not play a part in the fusion <br> process | Fusion does not use neutrons | No chain reaction |$\quad$ (1) |  |
| :--- |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 ~ ( b ) ~}$ | A description to include <br> Thermal energy used to create <br> steam / boil water(1) <br> (Steam used to drive) turbine (1) <br> (Turbine used to turn) generator <br> (1) | Ignore detail of fission process. |  |


| Question Number |  | Indicative Content | Mark |
| :---: | :---: | :---: | :---: |
| QWC | *5(c) | An explanation including some of the following points <br> - Description of the problem <br> - Nuclei have positive charge <br> - Repel each other <br> - Reduces possibility of suitable collisions <br> - Rate of fusion too small to be useful <br> - Description of how this can be overcome <br> - Very high temperature ( of fuel) <br> - Very high KE / speed of nuclei <br> - High KE can overcome repulsion <br> - Very high density / pressure <br> - Increases possibility of suitable collisions | (6) |
| Level | 0 | No rewardable content |  |
| 1 | 1-2 | A limited explanation <br> e.g. The fuel has to be at a high temperature to start the reaction make particles collide. <br> Or <br> The fuel has to be at a very high temperature and pressure. <br> - the answer communicates ideas using simple language and limited scientific terminology <br> - spelling, punctuation and grammar are used with limited accuracy | /to <br> uses |
| 2 | 3-4 | - A simple explanation. <br> e.g. We need to overcome repulsion of nuclei to make them collid This is achieved by having a high temperature and pressure. <br> - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriat <br> - spelling, punctuation and grammar are used with some acc | e. <br> clarity ely uracy |
| 3 | 5-6 | - A detailed explanation <br> - e.g. The nuclei repel each other. To overcome this they need very high kinetic energy which is achieved by generating hi temperature and pressure. <br> - the answer communicates ideas clearly and coherently uses range of scientific terminology accurately <br> spelling, punctuation and grammar are used with few error |  |

(Total for Question 5 = 12 marks)

| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :---: |
| $\mathbf{6 ( a )}$ | C - kill microbes in the food |  | $\mathbf{( 1 )}$ |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( \mathbf { i } )}$ | From the graph <br> Time taken to fall (from 8000) to <br> 4000 <br> $(1)$ | Any other suitable pair of <br> readings from the graph. <br> $=5.3$ (years) <br> $(1)$ | Between 5.1 and 5.5 <br> Full marks for correct answer <br> even if no working is evident |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( b ) ( i i )}$ | $3 \times 5.3$ | Allow attempt at extrapolation <br> only if the answer is between <br> 15.5 and 16.5 |  |
|  | (=15.9 years) | Allow ecf of 3 half lives from bi. | (1) |


| Question <br> Number | Answer | Acceptable answers | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 ( c ) ( \mathbf { i ) }}$ | Comparison including any two <br> from | Same atomic/proton <br> number/charge |  |
|  | Same number of protons (1) | Different number of neutrons (1) <br> Cobalt-60 is unstable (1) <br> number/atomic mass <br> Cobalt 60 is radioactive |  |
| Ignore reference to electrons |  |  |  |$\quad$ (2) |  |
| :--- |


| Question Numb |  | Indicative Content | Mark |
| :---: | :---: | :---: | :---: |
| QWC | $\begin{array}{r} * 6(c) \\ \text { (ii) } \end{array}$ | A discussion which includes description of the hazards (H) and / or possible precautions ( P ) to reduce risks arising from them such as <br> - In either option. <br> - Rods are radioactive (H) <br> - Gamma radiation is highly penetrating / ionising (H) <br> - Radiation from them can cause cancer / damage to organisms / people / environment (H) <br> - Need for shielding (P) <br> - Security to prevent public access (P) <br> - Transportation / reprocessing <br> - Danger of accident during transport (H) <br> - Need to be suitably protected against damage. (P) <br> - Danger of interception/high-jacking/terrorists (H) <br> - Need security (P) <br> - Workers could be exposed to radiation (H) <br> - Special facilities required (P) <br> - Disposal <br> - Can damage environment if not properly contained (H) <br> - Special disposal facilities, not landfill (P) <br> - Remain radioactive for some time (H) <br> - Need to be kept secure while decaying to safe levels. (P) <br> - Relatively short half-life means that very long term storage is not necessary. (P) | (6) |


| Level | 0 | No rewardable content |
| :---: | :---: | :---: |
| 1 | 1-2 | - a limited description of hazards or precautions in one option e.g. The rods are radioactive. Radiation can cause cancer. When the rods are disposed of then they will remain radioactive for some time. <br> - the answer communicates ideas using simple language and uses limited scientific terminology <br> - spelling, punctuation and grammar are used with limited accuracy |
| 2 | 3-4 | - a simple discussion of hazards for both options or a detailed discussion of one option. <br> - A detail discussion may either expand on several descriptive points about the hazard or may include suitable precautions. <br> e.g. The gamma radiation from the rods is highly penetrating. If they were simply put into landfill then they could damage the environment and so they would need special storage facilities until they had decayed to a safe level. <br> - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately <br> - spelling, punctuation and grammar are used with some accuracy |
| 3 | 5-6 | - a detailed discussion of hazards for both options. <br> e.g. Response as above PLUS if they were transported back to the reactor then they must be in very strong containers so that, if there was an accident, they would not be damaged and allow radioactive material to escape. <br> - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately <br> - spelling, punctuation and grammar are used with few errors |

