Question number	Answer	Mark
5(c)	Correctly identifies data points from the graph to calculate areas (1)	
	Calculates area under AB (1) 240 m	
	Calculates area under CD (1) 135 m	
	distance travelled at constant speed = 240 m is greater than distance travelled when slowing down = $135 \text{ m} (1)$	(4)

Question number	Answer	Mark
<mark>6(a)</mark>	B	(1)

Question number	Answer	Additional guidance	Mark
6(b)(i)	The time taken for the activity of a radioactive	accept for nuclide:	
	nuclide to halve (1)	sample	(1)

Question number	Answer	Additional guidance	Mark
<mark>6(b)(ii)</mark>	Determines number of half-lives and rounds (1) 263/87.7 = 3 Determines that 3 half-lives is $1/2 \times 1/2 \times 1/2 = 1/8$ (1) Determines mass of Pu-238 after 3 half-lives (1) 925/8 = 115.625 (g)	allow repeated division by 2 allow ecf from step 2 for 1 mark (mass of Pu-238 after1 half-life 925/2 = 462.5 (g))	
	Determines average energy released per second (1) 115.625 × 0.54 = 62.4 (J)	allow ecf from 1 half-life or from step 3	(4)

Question number	Answer	Mark
<mark>6(c)(i)</mark>	An answer that combines the following points of application of knowledge and understanding to provide a logical description:	
	 proton number/atomic number decreases by 1 (1) nucleon number/mass number remains unchanged (as p and n have same mass and mass of electron is (assumed) negligible) (1) 	(2)

Question number	Answer	Mark
6(c)(ii)	C	(1)

Question number	Answer	Additional guidance	Mark
7(a)	An answer that combines the following points of understanding to provide a logical description:	allow	
	 measurement of time between(or at) two positions using suitable timing equipment (1) measurement of suitable distance along the runway with metre rule (1) measurement of vertical height to starting position (1) 	stopwatch, light gates minimum is 0.5 m metal tape measure average speed = distance/time OR average speed = (speed at A - speed at B)/2	
	 repeats AND averages AND use of a correct equation (1) 		(4)

Question number	Answer	Additional guidance	Mark
9(c)	Substitution into $v = \frac{s}{t}$ to find v (1)	s is distance	
	$v = \frac{1.5 \times 10^{11}}{500}$ Substitution into $v = f \times \lambda$ and unit conversion (1)	award full marks for correct numerical answer without working	
	$v = \frac{1.5 \times 10^{11}}{500} = f \times 670 \times 10^{-9}$ Transposition (1) Rearrangement (1)	maximum 3 marks if λ in nm	
	$f = \frac{\left(1.50 \times 10^{11}\right)}{500 \times \left(670 \times 10^{-9}\right)}$		
	Answer (1) 4.5 x 10 ¹⁴ (Hz)	4.4776 x 10 ¹⁴ (Hz)	(4)

Question number	Answer	Additional guidance	Mark
10(a)(i)	An explanation that combines identification – knowledge (1 mark) and reasoning/justification – knowledge (3 marks): • causes 2 or 3 neutrons to	<mark>ignore</mark> U nucleus `splits up'/eq	
	 be released (1) (and) one or more of these (released) neutrons are absorbed by other (U) nuclei (1) which cause further fission of U nuclei (1) and release further neutrons that can be absorbed, causing a chain reaction (1) 		(4)

Question number	Answer	Mark
10(a)(ii)	Idea that to get a chain reaction the particle that impacts	
	the nucleus must be the same as the one released (1)	(1)

Question number	Answer	Additional guidance	Mark
10(b)	An explanation that combines identification – knowledge (1 mark) and reasoning/justification – knowledge (2 marks):	allow	
	 reaction will slow down (1) because there are fewer fissions (1) because fission more likely with slow neutrons (1) 	reactor shuts down/eq fission requires slow neutrons thermal neutrons for slow neutrons	(3)

Question number	Answer	Mark		
10(c)	10(c) An answer that combines the following points of understanding to provide a logical description:			
	 the reactor is surrounded by a coolant (1) the thermal energy release from the chain reaction heats the coolant (1) the hot coolant is used to generate steam which is used 			
	to drive the turbine (1)	(3)		

Question Number	Answer	Acceptable answers	Mark
<mark>4(a)</mark>	A description including the following points • steam { <u>drives/turns</u> } turbine (1)		
	 (which){<u>drives/turns/powers</u>} generator (1) 	transfers ke to electrical energy rotates a magnet in coils or coils in magnet accept dynamo for generator	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)	A description including the following points		
	 neutron {hits / splits / is absorbed by} uranium (nucleus) (1) 	full marks may be scored on a labelled diagram	
	• producing more neutrons (1)		
	 at least one neutron can {hit / split / be absorbed by} other uranium (nuclei) (1) 	fired at other U (nuclei) or "process repeats"	(3)

Question Number	Answer	Acceptable answers	Mark
<mark>4(c)</mark>	A krypton-91		(1)

Question Number	Answer	Acceptable answers	Mark
4(d)	 An explanation linking the following points removes electrons (1) from atoms (1) 	collides with atoms ignore references to β decay process (nucleus losing an electron)	(2)

Question Number	Answer	Acceptable answers	Mark
<mark>4(e)</mark>	An explanation linking the following points	ignore references to high temp and pressure	
	 nuclei are positively charged (1) 	accept same charge accept protons for nuclei accept atoms	
	• need enough energy to overcome repulsion (1)	and will repel each other	(2)

Question Number	Answer	Acceptable answers	Mark
5(a)	Α		(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	distance travelled = area under graph (1)	distance = average speed x time	
	substitution (1) $\frac{1}{2} \times 20 \times 2$	= 10 × 2	
	evaluation (1) 20 (m)	20 (m) allow (distance) = speed × time or 20 x 2 for 1 mark	
		give full marks for correct answer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
<mark>6(a)</mark>	An explanation linking the following points small percentage / amount of material (1) 		
	 activity level low / less than background (1) 	radiation/radioactivity for activity within safe limits	(2)

Question	Answer	Acceptable answers	Mark
Number			
6(b)(i)	B 50 days		
			(1)

Question	Answer	Acceptable answers	Mark
Number			
6(b)(ii)	12.5	10 - 15	
			(1)

Question Number	Answer	Acceptable answers	Mark
6(c)	 An explanation linking the following points time for halving (1) clear as to what is halving (1) (1) 	Allow for atoms: isotope / element / nuclei / (radioactive) substance /particles/(radioactive) material/radiation/count rate/Bq/activity/radioactivity time for half of the atoms to decay (2) time for the activity/count rate to drop to half (of original value) (2) time for ½ of it to decay (1)	(2)

Questi	on	Indicative Content Mar	
Numbe	er		
QWC	*6(d)	A discussion including some of the following points	
		Model components related to actual machine	
		• Tamp – radioactive source (p- source)	
		• sensor (LDR) – Geiger counter arrangement	
		 card – liquid in bottle 	
		Interaction of components related to working of machine	
		 rising of card - more liquid in bottle 	
		 rising of card – less light 	
		 higher resistance 	
		– smaller current / reading	
		- circuit switches on if too much light	
		 greater absorption gives less radiation to detect 	
		 machine discards bottle if too little liquid, model does not 	
			(6)
Level	0	No rewardable content	<u>i</u>
1	1 - 2	• a limited discussion comparing some of the indicative content. E.g.	
-		two of the lamp, sensor and card are related to the source (Geiger)	
		counter and liquid respectively.	
		 the answer communicates ideas using simple language and uses 	
		limited scientific terminology	
		 spelling, punctuation and grammar are used with limited accurate 	Jracy
2	3 - 4	 a simple discussion comparing parts of the process. E.g. Two 	o of the
		lamp, sensor and card are related to the source Geiger count	er and
		liquid respectively. The rising of the card gives more liquid in	the
		DOTTIE.	o with a
		the answer communicates ideas showing some evidence of cl and arganisation and uses scientific terminology appropriately	arity
		 spelling punctuation and grammar are used with some accur 	y acy
3	5 - 6	 spenny, punctuation and grannial are used with some accuracy a detailed discussion of the whole process. E.g. the lamp sensor 	
•	•••	and card are related to the source Geiger counter and liquid	1001
		respectively. The rising of the card gives more liquid in bottle	. Too
		much light/ radiation getting through starts the alarm.	
		 the answer communicates ideas clearly and coherently uses a 	a range
		of scientific terminology accurately	-
		• spelling, punctuation and grammar are used with few errors	

Question Number	Answer	Acceptable answers	Mark
2(a) (i)	B		(1)

Question Number	Answer	Acceptable answers	Mark
2(a) (ii)	Any one of the following Rocks Food Radon gas Cosmic rays Own bodies Fall-out Sun/stars (1)	Plausible named food such as coffee, brazil nut, bananas Space Specified medical/industrial use of x-rays Ignore smoke alarms, power stations (in normal use)	(1)

Question	Answer	Acceptable answers	Mark
Number			
2(a) (iii)	An explanation linking		
	 personal circumstances such 		
	as		
	geographical location		
	nature of their work		
	lifestyle		
	(1)		
	 the consequences such as 		
	radiation from radon		
	gas/particular rocks/fall-		
	out (eg Chernobyl)		
	greater exposure to x-rays		
	greater exposure to cosmic		(2)
	rays		
	(1)		

Question	Answer	Acceptable answers	Mark
Number			
2(a) (iv)	D		(1)

Question Number	Answer	Acceptable answers	Mark
2(b) (i)	From the graph		(2)
	Time taken to fall (from 120 to)	Any other suitable pair of	
	60	readings from graph	
	(1)		
	= 8 days	8.1, 8.2	
	(1)	Full marks for correct answer	
		even if no working is evident	

Question Number	Answer	Acceptable answers	Mark
2(b) (ii)	2.2 (days)	between 2.0 and 2.5	(1)
	(1)	2	

Question Number	Answer	Acceptable answers	Mark
<mark>2(b) (iii)</mark>	Any one of the following: • Mutation of dna • Ionisation of cells • (Increases risk of) cancer (1)	damage / mutate cells	(1)

Question Number	Answer	Acceptable answers	Mark
<mark>3(a)(i)</mark>	B		(1)

Question Number	Answer	Acceptable answers	Mark
3(a) (ii)	(equivalent to a) helium nucleus	Two protons and two neutrons for 2 marks helium/mass of 4 for 1 mark charge of +2 for 1 mark correct statement of any property for 1 mark	(2)

Question	Answer	Acceptable answers	Mark
Number			
3 (b)	 A description to include any four of the following neutron is captured by a U-235 nucleus nucleus (is) unstable nucleus splits into 2 daughter nuclei (of similar size) (2 or more) neutrons are released energy is released 	 collides with /absorbed by (U-235) nucleus metastable named isotopes 	(4)

Question Number	Answer	Acceptable answers	Mark
<mark>3 (c)</mark>	An explanation linking • moderator slows down (absorbs energy from) neutrons		
	 more likely to be captured /cause fission (if it collides with a U-235 nuclei) 	Reverse argument	(2)

Question Number	Ansv	wer	Acceptable answers	Mark
<mark>4(a)</mark>		P and M	one mark for a pair	
	OR	M and P		
	OR	N and Q		
	OR	Q and N		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)	{atomic /proton} number drops by 2 and {mass/nucleon} number by 4 (1)	2 protons and 2 neutrons are lost 92 \rightarrow 90 and 238 \rightarrow 234	
	(which is) alpha decay (1)	helium nucleus given off (which is) alpha particle	(2)

Answer	Acceptable answers	Mark
<pre>same {mass/nucleon} number</pre>	a neutron changes to a proton	
<pre>but {atomic/proton} number</pre>		
increases by 1 (1)		
	ignore GAINS a proton	
		(2)
(negative) beta decay (1)	beta particle /electron given off	
	Answer same {mass/nucleon} number but {atomic/proton} number increases by 1 (1) (negative) beta decay (1)	AnswerAcceptable answerssame {mass/nucleon} number but {atomic/proton} number increases by 1 (1)a neutron changes to a proton(negative) beta decay (1)beta particle /electron given off

Question	Answer	Acceptable answers	Mark
Number			
4(d)(i)	alpha	Alpha ray, alpha particle, a	(1)
		Ignore capital letters	

Question Number	Answer	Acceptable answers	Mark
4(d)(ii)	A description including two of		
	one increases as other increases (1)	the particles with higher energy travel further accept values quoted from graph	
	rate of increase is in the range from 1.17 to 1.33 (cm/MeV) (1)	not (quite) linear/not	
	range gradually increases more with energy (1)	proportional /curves upwards accept values quoted from graph	(2)

Question	Answer	Acceptable answers	Mark
Number			
4(e)	chain reaction needs a neutron	idea of continuous nature of	
	from one fission to reach another	chain reaction	
	uranium nucleus/atom (at the		
	right speed) (1)		
		the neutrons would be going too	
	(fission of 238) needs	slowly /do not have enough	
	{fast/high(er) energy} neutrons	energy / lose energy too fast	
	(1)		(2)

Question Number	Answ	er	Acceptable answers	Mark
<mark>6(a)</mark>	A des •	cription to include name of detector / move detector over the ground (1)		
	•	where leak is, there will be an increased rate (1)	<pre>(move) until a {leak/high reading} is found</pre>	(2)

Question	Answer	Acceptable answers	Mark
Number			
6(b)	D It is the time it takes for		
	half the atoms to decay		(1)

Question	Answer	Acceptable answers	Mark
Number			
6(c)i	1.9-2 (days)		(1)

Question	Answer	Acceptable answers	Mark
6(c)ii	80 70 60 50 20 10 0 0 1 2 3 4 5 6 7 8 9 10 Time (Days)		
	plotting (0,40), (2,20) and (4,10) OR ANY line which passes through those coordinates (1)		<mark>(2)</mark>
	smooth curve through those points (1)	Ignore any part of line after 4 days	

Questio	n	Indicative Content	Mark
QWC	*6(d)	An explanation including some of the following ideas	
		Need for measurement (N)	
		Background radiation	
		 is {always present/all around us} 	
		 has (natural) source(s) exemplified by space, living things, rocks, food, nuclear/medical sources etc. 	
		 would give false reading in experiment 	
		How and why to measure(H)	
		 Background radiation measurement is taken at site of experiment because it is different in different places 	
		 is taken with all apparatus except source in place 	
		 is taken before and after because {it can change with time / they need an average} 	
		 {must be worked out for same time as (or longer than) experiment / rate found} so analysis is simpler 	
		 It is {taken several times/ averaged} because it is random 	
		Analysis (A)	
		 Background radiation measurement must be subtracted from {measurements with source 	(6)
		/main count rate}	
Level	0	No rewardable content	
1	1 - 2	 A limited explanation mentioning any two from N or one f or A 	rom H
		e.g. Background comes from space and rocks.(N) It is there al time. (N)	l the
		OR Readings for background must be repeated because they	are
		OR Background must be taken away from all other readings	(A)
		 the answer communicates ideas using simple language and limited scientific terminology. 	d uses
		 spelling, punctuation and grammar are used with limited 	
2	2 4	accuracy	
2	5-4	• A simple explanation inking aspects of two ideas i.e. N OR $\mathbf{N} + \mathbf{A}$ OR $\mathbf{H} + \mathbf{A}$	+ п
		e.g Take readings without source (H) and subtract them from	the
		OR It should be taken several times because it is random (H)s	so that
		the average can be subtracted from the main readings (A)	
		 The answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriation 	tely
		 spelling, punctuation and grammar are used with some account 	curacy

3	5 - 6	 A detailed explanation <i>linking</i> A with EITHER N + an idea from H
		OR two or more
		ideas from H
		e.g.Background radiation is there all the time. (N) You need to take
		readings at the place where you will do the experiment and with
		all the apparatus set up except the source because BR changes
		from place to place (H) Then you should subtract background
		readings from the main experimental readings.(A)
		OR Take several readings of count rate for averaging since the
		effect is random (H) and make sure that they are taken in the
		same place (H) Then subtract from readings in main
		ovnoriment (A)
		experiment.(A)
		the answer communicates ideas clearly and concrently uses a
		range of scientific terminology accurately
		 spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
1(a)	Three lines as shown: alpha electromagnetic wave beta electron gamma helium nucleus (2)	Any one line correct only scores 1 mark	(2)

Question	Answer	Acceptable answers	Mark
Number			
1(b)	An explanation linking	ignore slow down neutrons	(2)
	Absorb (more) neutrons (1)		
	(to) reduce the number of fission	slow down (the rate of) the	
	reactions (1)	reaction/fission	

Question	Answer	Acceptable answers	Mark
Number			
1(c)(i)	B electrostatic repulsion of		(1)
	protons		
1			

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	 A description to include (two/or more/smaller) nuclei combine/fuse/join (1) (to produce) a larger nucleus (1) 	{(two or more) hydrogen nuclei/protons OR deuterium and tritium} combine/fuse (forming) helium nucleus ONLY penalise use of atoms instead of nuclei ONCE ignore references to release of energy as this is given earlier in the question.	(2)

Total for Question 1 = 7 marks

Question Number	Answer	Acceptable answers	Mark
4 (a)(i)	B 21		(1)

Question Number	Answer	Acceptable answers	Mark
4 (a)(ii)	A 39 19 K		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(iii)	A description to include any two of		(2)
	• (nucleus/isotope is) unstable (1)		
	• (nucleus/isotope is) radioactive (1)		
	• decay is random (1)		
	• long half life (1)		

Question	Answer	Acceptable answers	Mark
Number			
4(b)(i)	1250 (million years) (1)	Between 1200 and 1300 (my)	(1)
		inclusive	

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	2 half lives (1)		(2)
	2500 (million years) (1)	Allow ecf from (bi) Give full marks for answer	
		between 2400 and 2600 with no working.	

Question Number	Answer		Acceptable answers	Mark
<mark>4(c)</mark>	An e from	xplanation linking any three Radon is radioactive (1)	Ignore radiation from rocks themselves	(3)
	•	Radon can escape from rocks and buildings (1)	Radon enters/gets trapped in buildings/homes / increases background radiation	
	•	Radon can be inhaled (1)	(breathed into) lungs	
	•	Radiation (from radon) can cause cancer (1)	(DNA) mutation / cell damage	
	•	Radon emits alpha (1)	(Highly) ionising radiation	

Total for Question 4 = 10 marks

Question Number	Answer	Acceptable answers	Mark
<mark>5 (a) (i)</mark>	fuel Boron Control rod uranium moderator graphite	All three correct for 2 marks One or two only correct for 1 mark Reject any box with more than one line	(2)

Question Number	Answer	Acceptable answers	Mark
5(a) (ii)	A suggestion to include		
	Neutrons do not need to be captured (by another nucleus) /	Fusion does not use neutrons	
	do not play a part in the fusion	No chain reaction	(1)
	process		

Question Number	Answer	Acceptable answers	Mark
<mark>5 (b)</mark>	A description to include	Ignore detail of fission process.	
	Thermal energy used to create steam / boil water(1) (Steam used to drive) turbine (1)		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(3)

Question		Indicative Content	Mark
Number			
Qwc	*5(C)	An explanation including some of the following points	
		 Description of the problem Nuclei have positive charge Repel each other Reduces possibility of suitable collisions Rate of fusion too small to be useful Description of how this can be overcome Very high temperature (of fuel) Very high KE / speed of nuclei High KE can overcome repulsion Very high density / pressure Increases possibility of suitable collisions 	(6)
Level	0	No rewardable content	
1	1 - 2	A limited explanation	
		 e.g. The fuel has to be at a high temperature to start the reaction make particles collide. Or The fuel has to be at a very high temperature and pressure. the answer communicates ideas using simple language and limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	n/to d uses
2	3 - 4	A simple explanation.	_
		e.g. We need to overcome repulsion of nuclei to make them collid This is achieved by having a high temperature and pressure.	de.
		 the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriate 	f clarity
		 spelling, punctuation and grammar are used with some action 	curacy
3	5 - 6	A detailed explanation	/
		e.g. The nuclei repel each other. To overcome this they ne	ed
		very high kinetic energy which is achieved by generating h	ıgh
		 the answer communicates ideas clearly and coherently use 	s a
		range of scientific terminology accurately	
		 spelling, punctuation and grammar are used with few error 	rs

(Total for Question 5 = 12 marks)

Question Number	Answer	Acceptable answers	Mark
<mark>6 (a)</mark>	C - kill microbes in the food		(1)

Question Number	Answer	Acceptable answers	Mark
<mark>6 (b)(i)</mark>	From the graph Time taken to fall (from 8000) to 4000 (1)	Any other suitable pair of readings from the graph.	
	= 5.3 (years) (1)	Between 5.1 and 5.5 Full marks for correct answer even if no working is evident	(2)

Question /	Answer	Acceptable answers	Mark
<mark>6 (b)(ii)</mark> 3	3 x 5.3 (= 15.9 years)	Allow attempt at extrapolation only if the answer is between 15.5 and 16.5	(1)

Question Number	Answer	Acceptable answers	Mark
<mark>6 (c)(i)</mark>	Comparison including any two from Same number of protons (1)	Same atomic/proton number/charge	
	Different number of neutrons (1) Cobalt-60 is unstable (1)	Different nucleon number/mass number/atomic mass Cobalt 60 is radioactive	(2)
			(2)

Question Number		Indicative Content	Mark
Question Number QWC	*6(c) (ii)	Indicative Content A discussion which includes description of the hazards (H) and / or possible precautions (P) to reduce risks arising from them such as In either option. Rods are radioactive (H) Gamma radiation is highly penetrating / ionising (H) Radiation from them can cause cancer / damage to organisms / people / environment (H) Need for shielding (P) Security to prevent public access (P) Transportation / reprocessing Danger of accident during transport (H) Need to be suitably protected against damage. (P) Danger of interception/high-jacking/terrorists (H) 	Mark
		 Need security (P) Workers could be exposed to radiation (H) Special facilities required (D) 	
		 Special facilities required (P) Disposal 	
		 Can damage environment if not properly contained (H) 	
		 Special disposal facilities, not landfill (P) Remain radioactive for some time (H) 	
		 Need to be kept secure while decaying to safe levels (P) 	
		 Relatively short half-life means that very long term storage is not necessary. (P) 	<mark>(6)</mark>

Level	0	No rewardable content
1	1 - 2	 a limited description of hazards or precautions in one option e.g. The rods are radioactive. Radiation can cause cancer. When the rods are disposed of then they will remain radioactive for some time. the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	 a simple discussion of hazards for both options or a detailed discussion of one option. A detail discussion may either expand on several descriptive points about the hazard or may include suitable precautions. e.g. The gamma radiation from the rods is highly penetrating. If they were simply put into landfill then they could damage the environment and so they would need special storage facilities until they had decayed to a safe level. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed discussion of hazards for both options. e.g. Response as above PLUS if they were transported back to the reactor then they must be in very strong containers so that, if there was an accident, they would not be damaged and allow radioactive material to escape. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

(Total for Question 6 = 12 marks)