Question number	Answer	Additional guidance	Mark
7(a)	$CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$	Allow products in any	
	• LHS (1)	order	
	• RHS (1)		(2)

Question number	Answer	Mark
7(b)(i)	(line B) less steep/(line B) flattens later (1)	(1)

Question number	Answer	Mark
7(b)(ii)	• Slope = $60 \div 72 (1)$ • = $0.83(3) (\text{cm}^3 \text{ s}^{-1}) (1)$	(2)

Question number	Answer	Mark
7(c)	 An explanation that makes reference to: identification – knowledge (1 mark) and reasoning/justification – knowledge (1 mark): fewer particles/as the reactants are used up there will be fewer particles to react/lower concentration of particles (1) 	
	 this will result in a lower frequency of collisions so fewer particles reacting in a given time (1) 	(2)

Question	Answer	Mark
number		
7(d)	C	(1)

Question	Answer	Mark		
number				
7(e)	An explanation that combines identification – understanding			
	(1 mark) and reasoning/justification – understanding (2 marks):			
	 the decrease in temperature will cause a decrease in rate of 			
	reaction (1)			
	 and the increase in pressure will cause an increase in rate of 			
	reaction (1)			
	 because the changes have opposite effects on the rate it is not 			
	possible which has the greater effect (1)	(3)		

Question number	Answer	Mark
8(a)	Candidates relate information given to order of elements in the periodic table to predict: dark grey/black and solid/crystals	(1)

Level	Mark	Descriptor
	0	No awardable content.
Level 1	1-2	 The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) Lines of reasoning are unsupported or unclear. (AO2)
Level 2	3-4	 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) Lines of reasoning mostly supported through the application of relevant evidence. (AO2)
Level 3	5-6	 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) Lines of reasoning are supported by sustained application of relevant evidence. (AO2)

Question number	Answer	Marks
9(c)(i)	carboxylic acids	(1)

Question number	Answer			Marks
9(c)(ii)	A is	B is		
	H H H—C—C—O—H H H		H—C—C — 0—H	
		(1)	(1)	(2)

Question	Answer	Mark
number		
10(a)	B	
		(1)

Question number	Answer	Marks
10(b)	 An answer that combines the following points to provide a plan: measure known volume of sodium hydroxide solution (1) add same volume of each of the acids (1) stir the mixture (1) 	
	 record the initial and final temperatures/temperature change (1) 	(4)

Question number	Answer	Mark
10(c)	heat energy Activation energy 2HCI	
	 progress of reaction product line, labelled (2)HCl/product(s), to right of and lower 	
	 than reactant line, labelled H² + Cl²/reactants (1) curve drawn on diagram (1) activation energy labelled (1) 	(3)

Question number	Answer	Additional guidance	Mark
10(d)	 calculates energy needed to break bonds (1) calculates energy released in forming bonds (1) calculates energy change (1) evaluation of final answer with negative sign (1) 	Example of calculation Bonds broken = $436 + 243 = 679$ (kJ mol ⁻¹) Bonds formed = $2 \times 432 = 864$ (kJ mol ⁻¹) Energy change = $679 - 864 = -185$ (kJ mol ⁻¹)	
		Award full marks for correct numerical answer without working	(4)

Question Number	Answer	Acceptable answers	Mark
3(a)	C oxidation		(1)

Question	Answer	Acceptable answers	Mark
Number			
3(b)(i)	An explanation linking the		
	following points		
	• large(r) surface area (1)	<pre>large(r) {surface /area}</pre>	
	 more frequent collisions with 	more collisions	
	catalyst / reaction will go		(2)
	faster (1)OWTE		

Question Number	Answer	Acceptable answers	Mark
3(b)(ii)	An explanation linking the following points		
	catalyst becomes warmer(1)	<pre>gas (particles){move faster/more energy}</pre>	
	 {reactions faster / catalyst works better} when hotter (1) 		(2)

Question Number	Answer	Acceptable answers	Mark
3(c)	$2 CO + O_2 \rightarrow 2 CO_2$	allow multiples	
	• LHS formulae (1)		
	• RHS formula (1)		
	 balancing correct formulae (1) 		(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	An explanation linking the following points		
	 heat energy { given out / of reactants higher than products} / ORA (1) 	ignore bond making and breaking	
	• (so) exothermic (1)		(2)

Question Number	Answe	er	Acceptable answers	Mark
5(a)	An ex follow (1) (1)	planation linking two of the ing temperature decreases (1) {heat / energy} taken in (so process) endothermic	ignore references to bond breaking / making heat given out / exothermic = 1 max.	(2)

Question Number	Answer	Acceptable answers	Mark
5(b)	Shown correctly on diagram: horizontal line to right of reactant (1) product line below reactant line (1)	ignore any connecting lines product label not needed	(2)

Question	Answer	Acceptable answers	Mark
Number			
5(c)	D: heat energy is required heat		(1)
	energy is released		

Questi Numbe		Indicative Content	Mark
QWC		An explanation including some of the following points	
		of same mass larger surface area more frequent collisions higher rate of reaction	
		higher temperature particles move faster more frequent collisions particles have more energy more collisions have required energy to react / activation energy	(6)
Leve	0	more collisions successful higher rate of reaction ORA No rewardable content	
1	1 - 2	a limited explanation of one of factors e.g. at higher temper higher rate e.g. when particles smaller size higher rate the answer communicates ideas using simple language and limited scientific terminology spelling, punctuation and grammar are used with limited ac	uses
2	3 - 4	a simple explanation e.g. at higher temperature particles m faster, more collisions so higher rate e.g. smaller sized particles (of same mass) have greater surface a higher rate the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accurate.	rea so
3	5 - 6	a detailed explanation e.g. (when particles collide they) only when they have sufficient energy/activation energy and at a higher temperature more of the particles have sufficient energy/activation energy so more collisions will be successful and when particles sm size higher rate the answer communicates ideas clearly and coherently uses range of scientific terminology accurately spelling, punctuation and grammar are used with few errors	react r n aller a

Question Number	Answers	Acceptable Answers	Mark
3 (a)(i)	An explanation linking	Ignore any reference to enzymes	(2)
	 (substance which) speeds up / increases the rate of (a reaction) (1) 	Ignore changes/alters the rate	
	 (but is chemically) unchanged (at end of reaction) / not used up (in reaction) /mass remains the same (1) 	Allow provides an alternative route for the reaction with a lower energy / lowers the activation energy / reduces the energy needed for {a reaction to take place/successful collisions} (1)	
		Do not allow catalyst is a reactant /product	
		Ignore does not change products of reaction Ignore {does not take part/is not used/is not involved} in the reaction	

Question Number	Answers	Acceptable Answers	Mark
3 (a)(ii)	heat energy reactants products progress of reaction	Allow 2 lines in the correct positions unlabelled/ with incorrect labels (1)	(2)
	 labelled horizontal reactant line above product line line can be labelled reactants /carbon monoxide + oxygen /CO + O2 (1) labelled horizontal product line to right of reactant line line can be labelled product(s) / carbon dioxide / CO2 (1) 	Allow reactants and products written in the correct positions without horizontal lines (1) Ignore additional curves and arrows Ignore incorrect formulae if written in addition to correct words /names	

Question Number	Answers	Acceptable Answers	Mark
3 (a)(iii)	$C_7H_{16} + 11O_2 \rightarrow 7CO_2 + 8H_2O$	Accept multiples	(3)
	• correct formulae on lhs $C_7H_{16} + O_2$ (1)	Accept = for →	
		Ignore state symbols, even if	
	 correct formulae on rhs 	incorrect	
	$CO_2 + H_2O$ (1)		
	 balancing correct formulae 		
	(1)		

Question Number	Answers	Acceptable Answers	Mark
3 (b)	An explanation linking	Maximum (1) if particles have more energy / move faster	(2)
	 more particles (in the same volume) (1) 	Accept this shown in diagrams	
		Accept specific particles -	
		molecules or ions but not atoms	
		Allow (reacting) particles are	
		closer together (1)	
		Ignore just "more ({productive/	
	 more frequent collisions 	successful/ effective})	
	(between solute particles)	collisions"	
	(solute particles) collide	Ignore collisions are more likely	
	more often	ignore complete are more interp	
	or	Ignore greater {chance/	
	higher rate of collisions	probability} of collisions	
	(between solute particles) or	Ignoro factor collicions/collido	
	more collisions (between	Ignore faster collisions/collide more quickly	
	solute particles) in given	more quietty	
	time		
	(1)		

Total for Question 3 = 9 marks

Question Number	Answer	Acceptable answers	Mark
2(a)	A use hydrochloric acid which is		(1)
	more dilute		

Question Number	Answer	Acceptable answers	Mark
2(b)	An explanation linking two of		
	M1 {particles/reactants/collisions} have more energy (1)	atoms/ions/molecules as alternatives to particles	
		particles move faster	
	M2 more frequent collisions (1)	more collisions per unit time ignore collisions are more likely/greater chance/probability of collisions/faster collisions	
	M3 more {productive/successful/effective} collisions (1)	more particles have required activation energy	(2)

Question Number	Answer	Acceptable answers	Mark
2(c)(i)	С		
	mass of catalyst A		
	mass of catalyst B O time		
	mass of catalyst C time		
	mass of catalyst D time		
	mass of catalyst A		
	mass of catalyst B The state of the state		
	mass of catalyst C time		
	mass of catalyst D time		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)(ii)	$2H_2O_2 \rightarrow 2H_2O + O_2$ (2)	multiples or halves	
	all formulae correct (1)	reject other reactants or products	
	balancing correct formulae (1)	ignore heat on arrow or elsewhere ignore state symbols	
		ignore use of lower case h, lower case o, or use of superscripts or large numbers inside the formulae	(2)

Question Number	Answer	Acceptable answers	Mark
2(d)	An explanation linking		
	M1 energy needed to break bonds / energy released when bonds formed (1)	bond breaking is endothermic / bond making is exothermic if any contradictory statements made in M1, the mark cannot be awarded (and so M2 cannot be awarded either)	
	M2 more heat / energy is released than needed (1) M2 dependent on scoring M1	ignore numbers of bonds eg more bonds formed than broken "more energy is released forming bonds than needed to break bonds" (2)	
			(2)

(total for Question 2 = 8 marks)

Question number	Answer	Acceptable answers	Marks
1 (a)	A description linking	second mark is dependent on first.	
	a reaction that {takes in/absorbs} energy (1)		
	{heat/thermal} (energy) (1)		
		less energy is given out making bonds	
		than is taken in to break bonds (2)	
			(2)

Question number	Answer	Acceptable answers	Marks
1 (b)	An explanation linking two of the following		
	 the products have less energy than the reactants / ORA (1) 		
	 reaction gives out heat (energy)/heat (energy) has been lost from reaction (1) 		
	• it is an exothermic reaction (1)	more energy is given out making bonds than is needed to break bonds (1)	
			(2)

Question number	Answer	Acceptable answers	Marks
1 (c) (i)	any three from		
	larger surface area/use magnesium powder (1)	Allow increased {mass/amount} of magnesium	
	higher temperature (1)		
		allow increase heat / heat the acid	
		allow add a catalyst	
		ignore increase volume of acid	
		ignore increase concentration of acid	
		ignore surface area alone ignore temperature alone	
		ignore stirring	
			(2)

Question number	Answer	Acceptable answers	Marks
1 (c) (ii)	An explanation linking		
	 more particles (of acid in same volume) (1) 	allow ions/molecules/atoms	
	more frequent collisions(1)	allow more collisions per second	
		ignore more chance of collisions	
		ignore more successful collisions ignore more collisions	
		alone	
		Max 1 mark if answer refers to energy/particle speed	(2)

(Total for Question 1 = 8 marks)