Question number	Answer	Additional guidance	Mark
2(a)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): - a negative ion must have more electrons than protons in the particle (1) therefore Z will have a 2-charge (1)	Do not allow any comparison involving neutrons.	

Question number	Answer	Additional guidance	Mark
$\mathbf{2 (b)}$	$40+2 \times(14+16 \times 3)(1)$ $=164(1)$	Award full marks for correct numerical answer without working.	$\mathbf{(2)}$

Question number	Answer	Mark
2(c)	- Li ion with empty outer shell (1) - $1+$ charge on $\mathrm{Li}(1)$ - 8 electrons on outer shell of $F(1)$ - 1- charge on $F(1)$	(4)

Question number	Answer	Mark
3(a)(i)	C	(1)

Question number	Answer	Mark
3(a)(ii)	C	(1)

Question number	Answer	Mark		
$\mathbf{3 (b)}$	Any two of the following points.	For the acid, use the same:		
	volume (1) concentration (1)		\quad	(2)
:---				

Question number	Answer	Mark
3(c)(i)	electrolysis (1)	(1)

Question number	Answer	Mark
$\mathbf{3 (c) (i i)}$	An answer that combines identification- knowledge (1 mark) and understanding (1 mark) and reasoning/justification- understanding (1 mark)	
aluminium compounds are more stable than iron compounds (1) so carbon is not a strong enough reducing agent to produce aluminium from its ore (1)	(2)	

Question number	Answer	Mark
3(d)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$	
\vdots Correct formulae (1)		
	Balancing of correct formulae (1)	

Question number	Answer			Mark
4(a)	salt soluble insoluble			
	ammonium chloride	\checkmark		
	lithium sulfate	\checkmark		
	magnesium carbonate		\checkmark	
	- All three correct (2) - Any two correct (1)			(2)

Question number	Answer	Additional guidance	Mark
4(b)	- mass values in correct places (1) - multiplication by 100 (1) - correct final answer to two significant figures (1)	$\begin{aligned} & \frac{2.53}{2.85} \times 100=88.8 \% \\ & 89 \% \text { (to } 2 \text { s.f.) } \end{aligned}$ Award full marks for correct numerical answer without working.	(3)

Question number	Answer	Mark
4(c)	An explanation that combines identification - improvement of the experimental procedure (maximum 2 marks) and justification/reasoning, which must be linked to the improvement (maximum 2 marks): - add excess sodium sulfate solution rather than a few drops (1) - so more reaction occurs to form more lead sulfate (1) - filter the reaction mixture rather than pour off the liquid(1) - so none of the lead sulfate is lost on separation(1) - wash the lead sulfate (1) - so the impurities are removed (1) - place the lead sulfate in an oven/warm place (1) - so the lead sulfate is dry (1)	(4)

Question number	Answer	Mark
4(d)	volumes of solution too large for titration method (1) large volumes of liquid need to be heated and then allowed to crystallise (1)	(2)

Question number	Answer	Mark
$\mathbf{5 (a) (i)}$	C	(1)

Question number	Answer		Mark
5(a)(ii)	C		(1)
Question number	Answer		Mark
5(b)	reactants are being used up (1)		(1)
Question number	Answer		Mark
5(c)	An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): - aluminium and copper have different size atoms (1) - and so this prevents the layers of metal atoms from sliding over one another (1)		(2)
Question number	Answer	Additional guidance	Mark
5(d)	$\begin{aligned} & \text { proportion gold }=9 \div 24 \\ & (=0.375)(1) \\ & \text { mass }=0.375 \times 12=4.5(\mathrm{~g})(1) \end{aligned}$	Award full marks for correct numerical answer without working.	(2)
Question number	Answer		Mark
6(a)	An explanation that combines identification - application of knowledge (1 mark) and reasoning/justification - application of understanding (1 mark): - J and \mathbf{K} are electrolytes (1) - because their solutions conduct electricity and are decomposed (1)		(2)
Question number	Answer		Mark
6(b)	D		(1)
Question number	Answer		Mark
6(c)	An explanation that combines identification - understanding (1 mark) and reasoning/justification - understanding (3 marks): hydrogen $\left(\mathrm{H}^{+}\right)$and sodium $\left(\mathrm{Na}^{+}\right)$ions attracted to cathode, hydroxide $\left(\mathrm{OH}^{-}\right)$ions and sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ ions attracted to anode (1) - because the ions are attracted to the oppositely charged electrode (1) 2 hydrogen ions $/ 2 \mathrm{H}^{+}$accept 2 e to form hydrogen molecule/ H_{2} (1) - 4 hydroxide ions $/ 4 \mathrm{OH}^{-}$lose 4 e to form oxygen molecule/ O_{2} (1)		(4)

Question number	Answer	Mark
6(d)	$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$	
all species (1)		
	balancing (1)	(2)

Question number	Answer	Mark
7(a)(i)	An explanation that combines identification - understanding $(1$ mark) and reasoning/justification - understanding (2 marks): - rate increased/time to reach equilibrium reduced (1) - because gas molecules closer/more concentrated (1) - so increased collision rate/more frequent collisions(1)	(3)

Question number	Answer	Mark
7(a)(ii)	A	(1)

Question number	Answer	Mark
$\mathbf{7 (b)}$	equilibrium position/usefulness of by-products	(1)

Question number	Answer	Marks
2 (a)	D a salt + water The only correct answer is D A is not correct because a metal oxide reacting with acid would not produce carbon dioxide as one of the products	B is not correct because a metal oxide reacting with acid would not produce hydrogen as one of the products
C is not correct because a metal oxide reacting with acid would not produce oxygen as one of the products	(1)	

Question number	Answer	Acceptable answers	Marks
2 (b)	A description to include - effervesces/fizzes/bubbles (1) - (solid) disappears / (colourless) solution (formed) (1)	ignore gas/carbon dioxide evolved /steam/smoke reject ppt /any colour allow (solid) dissolves/decreases in size /clear Ignore disintegrate/breaks up	
			(2)

Question number	Answer	Acceptable answers	Marks
2 (c) (i)	An explanation including - decomposing / breaking down of (compounds/ substance/ electrolyte) (1) - direct current / d.c. supply / using electrical energy / electricity (1) (mark independently)	allow splitting up/breaking up ignore separate reject thermal decomposition reject breaking down of elements/atoms/molecules/ metals/bonds reject a.c. supply	

Question number	Answer	Acceptable answers	Marks
2 (c) (ii)	A description to include		
	- a glowing splint (1) M1 - relights (1) M2 M2 dependent on M1	allow smouldering/ embering splint (1) ignore blown out reject unlit splint reject other tests lighted splint burns brighter (2)	

Question number	Answer	Acceptable answers	Marks		
2 (c) (iii)	A description including the following: - lighted/lit splint / ignite gas (1) M1 - gas burns / with (squeaky) pop (if air present) (1) M2 M2 dependent on M1	allow flame		\quad	
:---					

GCSE Chemistry 5CH1H/01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	electrical (energy) / electricity / direct (electric) current	Reject \{ac/ alternating current\}	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	hydrogen	H_{2}	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\text { iii) }}$	A description including	Allow use of any suitable indicator (1) with correct result (damp blue or red) litmus (paper) eg eg Universal Indicator (1) is bleached (1) starch-iodide paper (1) turns blue-black (1)	(2)
		Allow bleaches indicator (1) (turns red and) bleached / white	Do not allow colourless for fbleached/white\} if indicator paper is used Ignore indicator gets lighter
Ignore any incorrect middle colour mentioned	Ignore smells of swimming pools		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	B electrolysis		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c)}$	carbon dioxide	CO_{2}	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (d)}$	$\mathrm{CuO}+\mathbf{2 ~ H C l ~} \rightarrow \mathrm{CuCl}_{2}+\mathbf{H}_{2} \mathbf{O}$	Reject obvious incorrect symbols	(2)
and subscripts			
	eg (1) $\mathrm{H}_{2} \mathrm{O}(1)$ Maximum 1 mark if additional incorrect balancing $\mathrm{H}_{2} \mathrm{O}(0)$ $\mathrm{H}_{2} \mathrm{O}(0)$ $\mathrm{H} 2 \mathrm{O}(0)$ Ignore state symbols		

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	electrical (energy) / electricity / direct (electric) current		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	A description including - \{light / ignite\} gas / lighted splint (1) gas burns / (squeaky) pop (if air is present) (1)	reject glowing splint	(2)
second mark conditional on first			

Question Number	Answer	Acceptable answers	Mark
4(b)	sea water / salt / brine / sodium chloride (solution)	(1)	

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	D salt and water only		(1)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	A description to include two from	(2)	
	- (green) solid \{disappears /		
dissolves\} (1)	ignore references to names of products colourless gas) given off (1)	fizz	
	- blue (solution) forms (1)	goes blue ignore incorrect colours of solution ignore temperature rise	

Question Number	Answer	Acceptable answers	Mark
3(a)	B hydrochloric acid		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (\mathbf { i })}$	magnesium nitrate	Ignore any symbols or formulae	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i i)}$	A carbon dioxide		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(i)	A description including the following litmus turns white /bleaches second mark is dependent on the first	Allow UI paper Ignore any colour (changes) before bleaching; but reject further colour changes after bleaching	(2)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	use fume cupboard / well ventilated room	Allow open windows Ignore gas mask / breathing apparatus etc / any other general safety precautions	(1)

Question Number	Answer	Acceptable answers	Mark		
3(c)(iii)	$2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}$	Allow correct multiples Ignore state symbols/ word equations	(3)		
	LHS formula (1) RHS formulae (1) balancing correct formulae (1) upper case $\mathrm{L} /$ incorrect h or subscripts e.g. $\mathrm{H}^{2}, \mathrm{H} 2$				
Allow $=$ for \rightarrow				\quad	
:---					

Total for Question 3 = 9 marks

