Question Number	Answer	Acceptable answers	Mark
<mark>1(a)</mark>	2.8.1	any separation allowed	(1)

Question Number	Answer	Acceptable answers	Mark
1(b)	An explanation linking two of the following points		
	both have two electrons (1)in outer shell (1)		
	• (therefore) in group 2 (1)		(2)

Question Number	Answer	Acceptable answers	Mark
<mark>1(c)</mark>	C		(1)

Question Number	Answer	Acceptable answers	Mark
1(d)	D		(1)

Question Number	Answer	Acceptable answers	Mark
<mark>1(e)</mark>	An explanation linking the following points {equal numbers of / three} protons and electrons (in atoms) (1) 		
	 proton (charge) +1 and electron (charge) -1 (1) 		(2)

GCSE Chemistry 5CH2H/01 Mark Scheme – Summer 2012

Question Number	Answer	Acceptable answers	Mark
1(a)	An explanation including the following points metal (1) 		
	 because {on left of / below} the line dividing metals and non-metals/because boron only non-metal in group 3 (1) 	correct statement relating to neighbouring metallic elements surrounded by metals	(2)

Question Number	Answer	Acceptable answers	Mark
1(b)	2.8.3	283	(1)

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	A five protons		(1)

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	An explanation including the following points		
	 atoms of same element / same {number of protons / atomic number} (1) 	ignore electrons	
	 different {numbers of neutrons / mass numbers} (1) 		(2)

Question Number	Answer	Acceptable answers	Mark
1(c)(iii)	more atoms have mass 11 (than	boron 11 isotope more abundant	(1)
	10) / ORA	OWTE	(1)

Question Number	Answer		Acceptable answers	Mark
4(a)(i)	particle	number		(2)
	proton	29		
	neutron	34		
	electron	29		
	all 3 correct (2)			
	any 1 or 2 correct	t (1)		

Question	Answer	Acceptable answers	Mark
Number			
4(a)(ii)	(copper atom has)	Do not allow 4 electrons on the	(1)
	4 (shells of electrons)	outer shell	
		Do not allow 4 outer shells	

Question Number	Answer	Acceptable answers	Mark
<mark>4(a)(iii)</mark>	An explanation linking	Maximum (1) if no mention of atom(s)/atomic Allow the marks if a specific example is given e.g. all chlorine atoms have 17 protons (1) but some have 18 neutrons and others have 20 neutrons (1)	(2)
	 atoms of the (same) element/ atoms with the same {number of protons/atomic number} (1) 	Ignore any reference to numbers of electrons Ignore different forms of an element	
	 (but) different {numbers of neutrons/mass numbers} (1) 	Allow {more/less} neutrons than the {usual/original} atom (1) Do not allow more neutrons than protons Do not allow different (relative) atomic masses	

Question Number	Answer	Acceptable answers	Mark
4(a)(iv)	• (in 100 atoms) mass of copper-63 atoms = $63 \times 70 / 63 \times 0.7 / 63 \times 7.$	63.6 with no working (3)	(3)
	63 x 70 / 63 x 0.7 / 63 x 7 (1) (= 4410 / 44.1 / 441)	63.5/64 with no working (0) Allow correct working shown to	
	 mass of copper-65 atoms = 65 x 30 / 65 x 0.3 / 65 x 3 (1) (= 1950 / 19.5 / 195) 	calculate 63.6 then final answer is rounded to 64 (3)	
	• relative atomic mass = $(63 \times 70 + (65 \times 30) / 4410 + $	Note: correct working shown to calculate 63.6 then final answer is incorrectly rounded to 63.5/63 (2)	
	$\frac{1950}{100} \qquad 100 \\ 44.1 + 19.5 / \frac{441 + 195}{441 + 195}$ (1) (=	Ignore any unit e.g. g	
	63.6) <u>10</u>	Allow TE for third mark e.g if percentages used the wrong way round 64.4 scores (1)	

Question Number	Answer	Acceptable answers	Mark
<mark>4(b)(i)</mark>		Reject any reference to a covalent bond or sharing electrons (0)	(2)
	 two electrons/ 2e⁽⁻⁾ (1) 	$Cu \rightarrow Cu^{2+} + 2e^{(-)}$ or $Cu - 2e^{(-)} \rightarrow Cu^{2+}$ (2) Allow +2 for charge	
	 {loses/gives away} electrons (1) 	Allow transfers electrons to another atom (1) Allow electrons taken away (1) Ignore electrons are missing Ignore references to the nitrate ion/other non-metals Ignore references to full outer shell	

Question Number	Answer	Acceptable answers	Mark
<mark>4(b)(ii)</mark>	Cu(NO ₃) ₂	Formula must be totally correct including subscripts, letter case and brackets Allow Cu ²⁺ (NO ₃ ⁻) ₂ Ignore any balancing numbers in front of formula Ignore any working/attempted equation to find the formula	(1)

Total for Question 4 = 11 marks

Question Number	Answers	Acceptable Answers	Mark
<mark>5 (a)</mark>	D is inert		(1)

Question Number	Answers	Acceptable Answers	Mark
<mark>5 (b)</mark>	An explanation linking	Any mention of intermolecular forces/covalent bonds/ionic bonds (0)	(2)
	 {atoms/cations/ions} are in {layers /sheets} (1) 	Accept a diagram showing layers with labelled {atoms/cations/ions} Ignore rows /lines/ lattice	
	 { layers/sheets } can {slide/slip/ move/roll } (over each other) (1) 	Do not allow electrons can slide/slip/move over each other Ignore references to delocalised electrons	

5 (c) P Br Allow PBr ₃ with no working or incorrect working (1) (3) $\frac{\text{mass } 3.1/31(= 0.1) 24/80}{(= 0.3) (1)}$ PBr ₃ with some correct working (1) PBr ₃ with some correct working (3) A_r Accept Br ₃ P Allow TE for second and third marks e.g. P Br $formula$ PBr ₃ PBr ₃ $31/3.1(= 10)$ $80/24 (= 3.33)$ (0) 3 1 (1)	Question Number	Answers		Acceptable Answers	Mark
P_3Br with no working (0)		mass 3.1/31(= 0.1) (=0.3) (1) Ar ratio 1 (1) formula PBr ₃	24/80	incorrect working (1) PBr ₃ with some correct working (3) Accept Br ₃ P Allow TE for second and third marks e.g. P Br $31/3.1(=10) \ 80/24 \ (= 3.33)$ (0) $3 \ 1 \ (1)$ P ₃ Br (1)	(3)

QuestionIndicative contentNumber		Indicative content	Mark
QWC		A description / explanation including some of the following points	(6)
		 Description effervescence / fizzing / bubbles float /on surface move produce hydrogen (may be shown in word or balanced equation) {an alkaline/metal hydroxide} solution (may be shown in word or balanced equation) gets smaller / disappears / dissolves reactivity increases with {increasing atomic number/ down the group} / potassium effervesces more than sodium and lithium / potassium moves faster than sodium or lithium sodium and potassium melt/form a (silver-coloured) ball hydrogen burns when potassium/ sodium react potassium gives a lilac flame/sodium gives a yellow flame Universal Indicator added to water turns blue/purple 	
		 Explanation (group 1 metals) react by losing one electron electron is more easily lost with {increasing atomic number/down the group} {electron/ outer shell} is further away from nucleus/ atomic radius increases/ there are more electron shells with {increasing atomic number/down the group} {more shielding (of outer electron)/ less attraction between nucleus and outer electron/ more shells between outer electron and nucleus} with {increasing atomic number/down the group} 	
Level	0	No rewardable material	
1	1-2	 a limited description of one or two points describing the reactions or explaining them e.g. reactivity increases down the group. the answer communicates ideas using simple language and uses lim scientific terminology. spelling, punctuation and grammar are used with limited accuracy. 	
2	3-4	 a simple description of at least three points describing the reactions combination of three points from the description and explanation e.g. they all float on water, fizz and potassium gives a lilac flame. the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately. spelling, punctuation and grammar are used with some accuracy.].
3	5-6	 a detailed description and explanation of at least five points described the reactions and explaining the pattern of reactivity e.g. the metal fizz, float and produce hydrogen, the reactivity increases down the obecause the outer electron is more easily lost. the answer communicates ideas clearly and coherently and uses scienterminology accurately. spelling, punctuation and grammar are used with few errors. 	s all group

Question Number	Answer	Acceptable answers	Mark
<mark>2(a)(i)</mark>	soft / low melting point / low boiling point	easily cut with a knife = soft low density malleable solid at room temp. ignore float on water reject chemical properties	(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	An explanation linking		(2)
	(all have) one electron in outer shell (2)	one outer electron = 2 marks	
		group number shows number of electrons in outer shell = 2 marks	
		same number of electrons in outer shell = 1 mark	
		incorrect number of electrons in the outer shell = 1 mark	
		accept outer orbit / highest energy level in place of outer shell	

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	A description including any two of		(2)
	effervescence / fizzing / bubbles (1) potassium floats (1) moves (on surface) (1)		
	potassium forms ball / melts (1) potassium decreases in size / disappears / dissolves (1) (lilac) flame / catches fire (1) spits / explodes / sparks (1)	ignore ignites ignore smoke	

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	$D: 2K + 2 H_2O \rightarrow 2KOH + H_2$		(1)

Question Number	Answer	Acceptable answers	Mark
<mark>2(c)</mark>	An explanation linking any two of increasing {size /radius (of atom) / number of shells} (1) increased shielding (of outer electron) (1) less attraction for (outer)	easier to remove (outer) electron	(2)
	electron (1)		

Question Number	Answer	Acceptable answers	Mark
3(a)(i)	A, B and C	Mg Ca Au (any order)	(1)
		magnesium calcium gold (any order)	

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	A and B	Mg Ca (any order)	(1)
		magnesium calcium (any order)	-

Question Number	Answer	Acceptable answers	Mark
3(b)	8 (protons)		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(i)	A : 10		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	<pre>(in 100 atoms) mass of mass number 20 atoms = 20 x 90 (1) mass of mass number 22 atoms = 22 x 10 (1) relative atomic mass = {(22 x 10) + (20 x 90)}/100 (=20.2) (1) OR 20 contributes = 90/100 x20(1) 22 contributes = 10/100 x22(1) relative atomic mass 90/100 x 20 + 10/100 x 22 (= 20.2) (1)</pre>	20.2 = 3 marks 21.8 = 2 marks (only 1 error made)	(3)

Answer	Acceptable answers	Mark
An explanation linking any two of		(2)
(the element is) group 0 / noble gas /unreactive / inert / does not react (1)	ignore 'not very reactive'	
{(has) 8 electrons / full} outer shell (1) prevents filament from reacting (1)	does not {gain / lose / share} electrons	
	An explanation linking any two of (the element is) group 0 / noble gas /unreactive / inert / does not react (1) {(has) 8 electrons / full} outer shell (1) prevents filament from reacting	An explanation linking any two of (the element is) group 0 / noble gas /unreactive / inert / does not react (1) {(has) 8 electrons / full} outer shell (1) prevents filament from reacting

Question Number	Answers				Acceptable Answers	Mark
<mark>1 (a)</mark>		relative mass	relative charge	position in atom	ignore units reject relative mass of proton: +1/1+	
	proton	1	(+1)	in nucleus	for relative mass of electron:	
	neutron	(1)	0	(in nucleus)	anything smaller than 1/1500/0.00067 (almost) 0/negligible/very	
	electron	1/183 7	-1	<mark>in</mark> shells	small for relative charge on	
	all 6 corre 4 or 5 corr	rect (2)			neutron: none/no charge/neutral	
	2 or 3 cor	rect (1)			for position of electron in an atom: in orbits / orbitals / energy levels / around the nucleus	
					/outside the nucleus ignore rings ignore inner/outer	(3)

Question Number	Answers	Acceptable Answers	Mark
1 (b)	D equal numbers of protons and		(1)
	electrons		

Question Number	Answers	Acceptable Answers	Mark
1 (c)(i)	Ca	Reject CA / ca /cA	(1)
		ignore calcium	

Question Number	Answers	Acceptable Answers	Mark
<mark>1 (c)(ii)</mark>	0	ignore any negative charge on the O ignore oxygen reject: oxide/O ₂	(1)

Question Number	Answers	Acceptable Answers	Mark
1 (d)(i)	13	Allow correct working even if	(1)
		wrong answer	

Question	Answers	Acceptable Answers	Mark
Number			
1 (d)(ii)	DAIN		(1)

(total for Question 1 = 8 marks)

Question Number	Answer	Acceptable answers	Mark
<mark>3(a)</mark>	B potassium and caesium, copper and iron		(1)

Question Number	Answer	Acceptable answers	Mark
3(b)(i)	A description linking	Any reference to molecules/molecular/intermolecul ar/covalent scores 0 marks overall	
	(regular arrangement of) positive ions /cations (1)	metal ions	
		reject "negative and positive particles" / positive atoms / protons	
		ignore descriptions of atoms in rows/ layers of particles etc	
	<pre>(surrounded by) {delocalised/sea of} electrons (1)</pre>		
		cloud of electrons ignore free	(2)

Question Number	Answer	Acceptable answers	Mark
<mark>3(b)(ii)</mark>	An explanation linking M1 electrons (1)		
	M2 move/flow (1)	pass through / travel	
	M2 dep on M1	For M2: ignore free/delocalised (electrons) ignore electricity flows ignore (electrons) vibrate ignore carry/pass the	
		current/charge	(2)

Question Number	Answer	Acceptable answers	Mark
<mark>3(c)(i)</mark>	A description including any two from	moves (around) on the surface (2)	
	floats (1)		
	moves (around) (1)		
	effervescence / fizzing / bubbles (1)	white smoke formed ignore gas/hydrogen given off	
	melts/changes to a ball shape (1)	dissolves / explodes	
	becomes smaller /disappears (1)	Ignore: burns/catches fire/ignites/flame/sparks ignore addition of indicators	(2)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	$\frac{2Na + 2H_2O \rightarrow 2NaOH + H_2}{2Na}$	NaHO	
	LHS (1) RHS (1)	ignore brackets around OH	
	balancing of correct formulae(1)	Use of lower case h, upper case A, lower case o, or use of superscripts or large numbers inside the formulae loses 1 mark only	
		ignore state symbols	<mark>(3)</mark>

(total for Question 3 = 10 marks)